
Fast and Energy-Efficient Monocular Depth
Estimation on Embedded Systems

by

Diana Wofk

B.S., Massachusetts Institute of Technology (2018)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2020

Certified by. .
Vivienne Sze

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Fast and Energy-Efficient Monocular Depth Estimation on

Embedded Systems

by

Diana Wofk

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Depth sensing is critical for many robotic tasks such as localization, mapping and
obstacle detection. There has been a growing interest in performing depth estimation
from monocular RGB images, due to the relatively low cost and form factor of RGB
cameras. However, state-of-the-art depth estimation algorithms are based on fairly
large deep neural networks (DNNs) that have high computational complexity and
energy consumption. This poses a significant challenge to performing real-time depth
estimation on embedded platforms. Our work addresses this problem.

We first present FastDepth, an efficient low-latency encoder-decoder DNN com-
prised of depthwise separable layers and incorporating skip connections to sharpen
depth output. After deployment steps including hardware-specific compilation and
network pruning, FastDepth runs at 27−178 fps on the Jetson TX2 CPU/GPU, with
total power consumption of 10−12 W. When compared with prior work, FastDepth
achieves similar accuracy while running an order of magnitude faster.

We then aim to improve energy-efficiency by deploying FastDepth onto a low-
power embedded FPGA. Using an algorithm-hardware co-design approach, we de-
velop an accelerator in conjunction with modifying the FastDepth DNN to be more
accelerator-friendly. Our accelerator natively runs depthwise separable layers using
a reconfigurable compute core that exploits several types of compute parallelism and
toggles between dataflows dedicated to depthwise and pointwise convolutions. We
modify the FastDepth DNN by moving skip connections and decomposing larger con-
volutions in the decoder into smaller ones that better map onto our compute core.
This enables a 21% reduction in data movement, while ensuring high spatial utiliza-
tion of accelerator hardware. On the Ultra96 SoC, our accelerator runs FastDepth
layers in 29 ms with a total system power consumption of 6.1 W. When compared to
the TX2 CPU, the accelerator achieves 1.5−2× improvement in energy-efficiency.

Thesis Supervisor: Vivienne Sze
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First and foremost, I would like to thank Professor Vivienne Sze for advising my
research. She gave me the opportunity to join her group when I was just a freshman,
and she has continuously motivated me to grow as a researcher since then. I have
been fortunate to learn a lot from Vivienne in many of her classes, and I am very
grateful to have worked on the FastDepth project since its conception. Vivienne’s
guidance and commitment have been invaluable to its success. I would also like to
thank Professor Sertac Karaman for helping supervise the FastDepth project.

I am deeply grateful to Fangchang Ma and Tien-Ju Yang, who collaborated with
me on the development of FastDepth and with whom I co-authored my first publi-
cation. Their mentorship and assistance have been tremendous sources of knowledge
and inspiration. I am also grateful to Yu-Hsin Chen and Amr Suleiman for providing
helpful suggestions on hardware design during the second half of my MEng work.

Being a member of the EEMS group has been a memorable experience. Thank
you to James Noraky, Nellie Wu, Gladynel Saavedra Pena, Jane Lai, Zhengdong
Zhang, Peter Li, Soumya Sudhakar, and Theia Henderson. I have greatly enjoyed our
discussions and camaraderie. A special thanks to Mehul Tikekar for mentoring me
and nurturing my interest in research during my undergraduate years in the group.

The Undergraduate Office has been a constant source of support. Many thanks to
Myriam Berrios, Vera Sayzew, Anne Hunter, Brandi Adams, and Katrina LaCurts.
Their encouragement, humor, and willingness to listen brightened up my day when-
ever I would come visit. Additional thanks to Jessie Stickgold-Sarah from the WRAP
Office for guiding me in my early thesis stages and helping me organize my writing.

I would like to sincerely thank my friends at MIT who made my MEng journey full
of joy and cherished memories: Anna Sinelnikova, Jing Lin, Allison Lemus, Abigail
Katcoff, Cassia Wang, Camila Thanos, Madeleine Waller, among many others!

Lastly, I would like to express my heartfelt gratitude to my dear grandmother
for her unconditional support, understanding, and eagerness to help in any way she
can. And to my late mother, who always believed in me and sacrificed absolutely
everything she had for me to be where I am now. This thesis is dedicated to her.

This work was funded by Analog Devices, Inc., Intel, and the National Science
Foundation, Real-Time Machine Learning (RTML) program, grant no. 1937501.

5

6

Contents

1 Introduction 25

1.1 Monocular Depth Estimation . 26

1.1.1 Problem Definition . 27

1.1.2 Literature Review . 27

1.2 Efficient Neural Network Design . 32

1.2.1 Overview of Deep Neural Networks 33

1.2.2 Compact Network Architecture Design 36

1.2.3 Network Pruning . 40

1.2.4 Network Quantization . 41

1.3 Accelerators for Deep Neural Networks 42

1.3.1 CPU and GPU Acceleration 42

1.3.2 FPGA and ASIC Acceleration 44

1.3.3 Neural Network Compilers . 45

1.3.4 Dataflow-Based Accelerator Design 46

1.4 Thesis Contributions . 50

2 FastDepth, a Compact DNN for Monocular Depth Estimation 53

2.1 Related Work . 54

2.2 FastDepth DNN Architecture . 56

2.2.1 Encoder Network . 57

2.2.2 Decoder Network . 58

2.2.3 Skip Connections . 58

2.2.4 Layer Types Used . 59

7

2.3 Training Environment . 59

2.4 Post-Training Evaluation and Analysis 60

2.5 Ablation Studies . 62

2.5.1 Encoder Design Space . 62

2.5.2 Decoder Design Space . 63

2.5.3 Skip Connections . 67

2.6 Summary . 67

3 Real-Time Depth Inference on an Embedded CPU/GPU 69

3.1 Hardware-Specific DNN Compilation 69

3.2 DNN Simplification through Pruning 71

3.3 Post-Compilation Evaluation on the Jetson TX2 72

3.3.1 TX2 Power Consumption Modes 75

3.4 Live Depth Inference on an Apple iPhone 77

3.5 Summary . 79

4 Energy-Efficient Acceleration on an Embedded FPGA 83

4.1 Algorithm-Hardware Co-Design Strategy 84

4.1.1 Design Considerations . 84

4.2 Dataflow Design . 86

4.2.1 Heterogeneous Dataflow for Depthwise Separable Layers . . . 86

4.2.2 On Serializing vs. Pipelining the Dataflow Design 89

4.3 Accelerator Design . 94

4.3.1 Compute Core . 95

4.3.2 Network-on-Chip (NoC) . 103

4.3.3 On-chip Memory Hierarchy 107

4.3.4 Off-chip Memory Interface . 113

4.4 Accelerator-Friendly FastDepth DNN 115

4.4.1 Network Modifications . 116

4.4.2 Integer Quantization . 127

4.5 Mapping FastDepth onto the Accelerator 133

8

4.5.1 Tiling Feature Maps . 133

4.5.2 Mapping FastDepth Layers . 135

4.5.3 Utilization of the PE Array 137

4.6 Implementation Results . 142

4.6.1 System Overview . 142

4.6.2 Logic Performance Analysis 145

4.6.3 System Performance Analysis 148

4.6.4 External Memory Accesses . 151

4.6.5 Challenges . 154

4.7 Evaluation of FastDepth on the Ultra96 SoC 159

4.7.1 Against FastDepth on the Jetson TX2 159

4.7.2 Against Other Workloads on the Ultra96 160

4.8 Summary . 163

5 Conclusion 165

5.1 Key Takeaways . 167

5.2 Future Work . 169

9

10

List of Figures

1-1 This thesis studies learning-based monocular depth estimation. Left:

a simple visualization of this task, where an input color image is pro-

cessed to produce an dense depth map containing depth measurements

for every pixel in the image. Right: a diagram depicting learning-based

depth estimation, where a deep neural network (DNN) is used to predit

pixel-wise dense depth from the input image. 27

1-2 Diagram of a convolutional layer. Each of the 𝑀 filters is first con-

volved channel-by-channel with the input feature map. The results

are then added element-wise to yield a single output channel. This

repeats for all 𝑀 filters, producing 𝑀 output channels in total. Out-

put channels may be subject to a channel-wide bias that is added after

convolution. 35

1-3 A depthwise separable layer factorizes a standard convolution into two

smaller ones: a depthwise convolution performing channel-wise convo-

lution, and a pointwise convolution performing element-wise channel

aggregation. 37

1-4 Diagram of a depthwise separable layer. This type of layer consists

of a depthwise convolution shown in (a) and a pointwise convolution

shown in (b). 38

1-5 Diagrams showing different dataflows. Each dataflow variant aims to

exploit data reuse of a different datatype. Figures taken from [1]. . . 49

11

1-6 The row stationary dataflow aims to maximize overall convolutional

reuse of all datatypes. Every processing element (PE) operates on one

row of filter weights (reused horizontally through the array) and one

row of input activations (reused diagonally through the array). Figure

taken from [1]. 50

2-1 Examples of two depth estimation DNN structures. 55

2-2 Our FastDepth network architecture. The encoder is shown in blue;

decoder is shown in yellow. Dimensions of intermediate feature maps

are given as height × width × channels. Arrows from encoding layers

to decoding layers denote additive (rather than concatenative) skip

connections. 57

2-3 Visual representations of different upsample operations we consider for

decoders: (a) UpProj [2], (b) UpConv [2], (c) DeConv5, (d) NNConv5. 64

2-4 Visualized results of depth estimation on the NYU Depth v2 dataset

after training. (a) input RGB image; (b) ground truth; (c) our model,

FastDepth, without skip connections; (d) our model, FastDepth, with

skip connections. 66

3-1 Number of input channels to each layer in our network architecture af-

ter pruning. The shaded part represents the architecture before prun-

ing. The very first layer to the network (mobilenet.0) is not shown

since the channel size of the input fed into the network remains fixed

at 3 channels (RGB). 72

3-2 Visualized results of depth estimation on the NYU Depth v2 dataset,

now including results from FastDepth after compilation and prun-

ing. (a) input RGB image; (b) ground truth; (c) our model, without

skip connections, unpruned; (d) our model, with skip connections, un-

pruned; (e) our model, with skip connections, pruned; (f) error map

between the output of our final pruned model and ground truth, where

redder regions indicate higher error. 73

12

3-3 Accuracy vs. framerate plot comparing FastDepth against prior works.

Our network is to the far right of the curve, indicating a better perfor-

mance tradeoff. 75

3-4 Power consumption over time when running FastDepth inference on

the Jeston TX2. Code used to generate power traces sourced from [3]. 76

3-5 Our FastDepth CoreML model running live at 40 fps on iPhone X.

Demo video available at http://fastdepth.mit.edu/. 78

3-6 Reduction in inference runtime on the TX2 achieved with different

steps our approach. Stacked bars represent encoder-decoder break-

down; total runtimes are listed above the bars. The row of 𝛿1 accura-

cies listed at the bottom shows the impact of individual steps in our

approach on accuracy. Relative to ResNet-50 with UpProj, our final

model achieves 65× speedup while maintaining accuracy. 80

4-1 Motivation for an output stationary dataflow. In (a), partial sum out-

puts are written out to on-chip memory (and potentially to off-chip

memory), then read back in so they can be accumulated or updates

as the PE continues to compute MACs. In (b), partial sums are held

stationary in PE storage until accumulation is done, and the completed

partial sum output is written out once. Since data movement across

memory levels (PE ↔ on-chip buffer ↔ off-chip DRAM) gets increas-

ingly more expensive, both in terms of latency and energy [1], option

(b) is a desirable choice. 88

13

http://fastdepth.mit.edu/

4-2 Row-stationary dataflow for depthwise convolution. Each processing

element (PE), depicted as a gray box, takes a row of input feature map

values and a row of depthwise filter weights as input; after convolving

the rows, the PE sends its result to the PE below it for spatial accu-

mulation. The bottom-most PEs contain completed results from the

3×3 convolution and can send those out to memory. This dataflow

computes up to 7 rows from a single channel of depthwise outputs at

once. 90

4-3 Output-stationary dataflow for pointwise convolution. This begins

after the row-stationary dataflow has completed all depthwise chan-

nel outputs. These depthwise outputs are then streamed channel-by-

channel back into the processing elements. Each row of PEs in the

array receives pointwise weights for all channels from one filter. This

allows every PE in the row to complete channel-wise aggregation for a

unique row of a single pointwise output channel. Different rows of PEs

work on different pointwise output channels. Every PE will hold its

row of pointwise partial sums stationary until channel-wise accumula-

tion is complete. This dataflow computes up to 7 rows from 3 channels

of pointwise outputs at once. 91

4-4 Partitioning the PE array for serialized vs. pipelined dataflow ap-

proaches. A serialized approach requires a reconfigurable PE array

that can toggle, e.g., between depthwise and pointwise convolution

dataflows. This allows for more flexible allocation of PE resources but

increases the complexity of PE design and control logic. A pipelined

approach sets aside subsets of the PE array dedicated to each of the

pipelined operations, which in this case are the depthwise and point-

wise convolutions. This allows for simpler PE designs in each of the

sub-arrays; however, since pointwise computations dominate in quan-

tity over depthwise computations, a pipelined approach makes load

balancing across dedicated PE arrays more difficult. 93

14

4-5 Comparing serialized vs. pipelined dataflow approaches. Our analysis

shows that a pipelined approach will be at least slightly slower than

a serialized approach over a wide range of PE array sizes. This figure

plots the speed overhead of a pipelined approach relative to a seri-

alized one, where speeds are proxied by analytically computing clock

cycles for all depthwise separable convolutional layers in FastDepth’s

MobileNet encoder. 94

4-6 High-level accelerator diagram. The innermost module is the process-

ing element (PE) that computes multiply-accumulate operations. PEs

are arranged in blocks that compute depthwise and pointwise convo-

lutions. Blocks can be replicated for more compute parallelism. The

resulting PE array interfaces with on-chip memory consisting of local

PE storage, block-level storage, and larger global buffers (GLBs). . . 95

4-7 Diagram of a processing element. The PE performs multiply-accumulate

operations (MACs) and bias addition; it also applies ReLU and quanti-

zation functions to values being written out to on-chip buffers. The PE

performs row-wise processing (e.g., 1D convolutions of rows, element-

wise addition of rows) and stores a row of an input feature map, a filter,

and partial psums at a time. Some datapaths and control logic are re-

configurable based on the convolution mode (depthwise vs. pointwise). 97

4-8 Logic breakdown comparing depthwise- and pointwise-specific logic

within the PE. Logic here refers primarily to LUTs and registers found

in the PE netlist after synthesis. Common logic mostly includes shared

registers. Depthwise- and pointwise-specific logic includes counters and

control logic for those convolutions. 98

4-9 Row-wise output parallelism in the PE block. Each column of PEs

works on a different row of convolution outputs. The number of columns

equals the number of rows in an output tile, which is selected to be

7, the greatest common factor of output feature map dimensions in

FastDepth layers. 100

15

4-10 Diagram illustrating how the PE array processes channels during depth-

wise and pointwise convolution. Shown for a single tile that may be

smaller than the input or output feature map (e.g., as shown here by

the darker-shaded portions within feature maps). To cover the entire

feature map, tiles are iterated through in a raster scan — first horizon-

tally, then vertically. 102

4-11 Network-on-Chip (NoC) connecting PE blocks to on-chip memory. In-

put feature maps, weights, and biases are delivered to PE blocks from

on-chip global buffers (GLBs). There is a separate GLB for each of the

different datatypes, and all GLBs are banked to provide parallel read

access to all PE blocks. After convolution, outputs are held within

PE blocks; each PE block has dedicated storage for the depthwise and

pointwise output channels computed by that block. In-order read ac-

cess for those outputs is controlled via block selectors (multiplexers). 106

4-12 Handling convolution strides in the NoC and the PE. 108

4-13 Buffer and alignment logic to facilitate convolution striding and adding

skip connections. In both cases, four feature map tiles are buffered on-

chip at once. 109

4-14 Top-level design wrapper and the DMA interface. 114

4-15 Shifting skip connections in the decoder so that they terminate before

interpolation allows us to ensure that nearest-neighbor interpolation

is always followed by a 5×5 convolution; this enables the decomposi-

tion of the 5×5 convolution into smaller 3×3 ones. Additionally, this

shift allows us to downsample feature maps from the encoder prior to

them being passed along the skip connection, which contributes to a

reduction in overall feature map data movement. 117

16

4-16 Decomposition of a 5×5 kernel into 4 smaller 3×3 kernel. This de-

composition is valid when the 5×5 convolution is preceded by nearest-

neighbor interpolation. The red boxes here indicates windows of pixels

in the interpolated input feature map that have identical values. As

the 5×5 kernel slides across, kernel values inside the 2×2 windows

get multiplied by identical feature map values. instead of performing 4

multiplications and 4 additions, the kernel values can first be pre-added

and then multiplied once by the shared pixel value. 120

4-17 After filter decomposition, each of the four smaller 3×3 filters can be

convolved with the non-interpolated input feature map. This produces

four outputs that can be interleaved. The resulting output feature

map with match the one coming from the original 5×5 convolution

performed after nearest-neighbor interpolation. 121

4-18 Receptive field refers to the window of the input that is visible to an

element of a filter in a convolution (shown here by the dashed squares).

The receptive field of two cascaded 3×3 convolutions matches that of

a single 5×5 convolution. 124

4-19 Accelerator-friendly FastDepth DNN topology. The two key modifi-

cations are in the decoder: (1) shifting skip connections to terminate

before nearest-neighbor interpolation and downsampling feature maps

passed along the connections, and (2) replacing the first 5×5 convolu-

tion with a cascade of two 3×3 convolutions. 125

17

4-20 Comparing FastDepth network topologies after channel pruning with

NetAdapt [4]. Figures show the number of input channels to each

layer in the network. The shaded part represents the topology before

pruning. The very first layer to the network (mobilenet.0) is not

shown since the channel size of the input fed into the network remains

fixed at 3 channels (RGB). Overall, the shapes of the two topologies

look similar. The modified network contains an extra layer at the

beginning of its decoder; to compensate for this, several other layers

get pruned more. 126

4-21 For feature map sizes to be preserved during 3×3 convolution, the

height and width of the input feature map must be padded with a

single row or column of elements on each side. Here, the input feature

map is shown in blue, the kernel is shown in grey, and the output

feature map is shown in teal. Figure taken from [5]. 134

4-22 Padding and tiling input feature maps for 3×3 convolutions. In the

FastDepth accelerator, the output feature map tile height and width

are set to be 7×7, meaning that input feature map tiles must have a

height and width of 9×9. This figure illustrates an example of how a

14×14×𝐶 input feature map is padded and then tiled into four 9×9×𝐶

tiles. Overlapping regions (called halos) amongst adjacent tiles are

depicted with a diagonal pattern. 135

4-23 Layer-by-layer spatial utilization of the PE array. Our accelerator

achieves high spatial utilization for almost all FastDepth layers. The

only significant exception is the final layer that produces just a single

output channel. 140

18

4-24 Layer-by-layer temporal utilization of the PE array. There are two

sources of temporal utilization hits: PE idleness while feature map

GLBs are filled up with data from DRAM (this impacts depthwise

temporal utilization) and PE idleness while output feature maps are

written out to DRAM (this impacts pointwise temporal utilization).

Since there is far less depthwise computation in FastDepth than there

is pointwise computation, the depthwise temporal utilization hit is far

more noticeable. 141

4-25 Accelerator logic breakdown by module type. 144

4-26 Layer-by-layer runtime in simulation (clocked at 250 MHz). Pointwise

computation dominates active time, as is to be expected since there are

more pointwise MACs than depthwise MACs in FastDepth. Depthwise

idle time is due to PEs waiting for the input feature map GLB to fill up

(which is why layers 0 and 2, requiring 4× as many input activations

due to convolution strides of 2, experience high depthwise idle times).

Pointwise idle time is due to PEs waiting for output buffers to clear out.146

4-27 Layer-by-layer power consumption in simulation. 147

4-28 Power consumption breakdown from simulation. BRAM power con-

sumption dominates, followed by logic power and signal power. 148

4-29 Layer-by-layer runtime on hardware (clocked at 250 MHz), compared

with the previously reported layer-by-layer runtime from simulation. . 149

4-30 System runtime including PYNQ API calls and feature map transfor-

mations between layers. Feature map transforms involve aligning and

merging output tiles, which incurs significant runtime overhead (to be

discussed in Section 4.6.5). 150

4-31 System power consumption during end-to-end FastDepth inference on

the Ultra96. In its idle state, the system consumes around 4.75 W of

power. During inference, the system consumes around 6.1 W. 151

4-32 External memory accesses in our design vs. target minimums. 152

19

4-33 Timing diagram illustrating memory accesses overlapped with depth-

wise and pointwise computation. The red boxes highlight two potential

sources of idle time in the PE array. Both represent challenges in hiding

memory access latency. 155

4-34 Flow diagram of feature map transformations taking place between

layers. These transformations convert the output stream coming from

the accelerator into a high-dimensional tensor that is padded and tiled

before being fed back into the accelerator via an input stream. In

our system, these transformations are done by the CPU onboard the

Ultra96, while layer processing is done on the FPGA. 158

20

List of Tables

1.1 Shape parameters for layers in a DNN alongside their descriptions. . . 34

2.1 Comparing FastDepth against prior work. For 𝛿1, higher is better. For

all others, lower is better. Statistics for cited works come from our re-

implemented models. Reported runtimes are measured in PyTorch on

an NVIDIA Jetson TX2. Our network design achieves close to state-

of-the-art accuracy with a significant reduction in MACs and GPU

runtime. 61

2.2 Comparison of encoder variants in our ablation study. RMSE and 𝛿1

are for encoder-decoder networks with the decoder fixed as NNConv5.

All other metrics are for the encoder in isolation. Runtimes are mea-

sured in PyTorch on a TX2. We select MobileNet as the best encoder

option. 62

2.3 Comparison of decoder variants in our ablation study. RMSE and 𝛿1

are for encoder-decoder networks with a MobileNet encoder. All other

metrics are for the decoder in isolation. Runtimes are measured in

PyTorch on a TX2. We select NNConv5 as the best decoder option. . 64

2.4 Impact of depthwise decomposition and skip connections in the decoder

on network complexity and TX2 runtime. 65

21

3.1 Hardware-specific compilation enables inference speedup on both the

CPU and GPU when incorporating depthwise separable layers in our

network. Additive skip connections do not add noticeable runtime

overhead after compilation, as is expected. All runtimes are measured

on the Jetson TX2. 70

3.2 Impact of pruning on our encoder-decoder network. Pruning together

with compilation enable real-time inference throughput on the CPU

at 27 fps and further increase throughput on the GPU to 178 fps.

Reported runtimes are measured after compilation for the Jetson TX2. 73

3.3 Comparing our pruned and compiled FastDepth network against prior

work. For 𝛿1, higher is better. For all others, lower is better. Statistics

for cited works come from our re-implemented models. Reported run-

times are measured in PyTorch on an NVIDIA Jetson TX2 in max-N

mode. Our final network design surpasses real-time inference speeds

on both the GPU and CPU. Overall, FastDepth achieves close to state-

of-the-art accuracy while running an order of magnitude faster. 74

3.4 Summary of NVIDIA Jetson TX2 power modes, taken from [6]. Max-

N mode allows for the highest performance (throughput) at the cost

of higher power consumption. Max-Q mode aims to provide the best

power-throughput tradeoff. 75

3.5 Inference runtime and peak power consumption when deploying Fast-

Depth on the Jetson TX2 in high performance (max-N) and high effi-

ciency (max-Q) modes. Active power consumption can be estimated by

subtracting the idle power consumption from the reported total power

consumption. In both power modes, FastDepth consumes less than 10

W of active power. 77

3.6 Inference runtime of our FastDepth CoreML model on Apple iPhone. 79

22

4.1 Selecting a dataflow for pointwise convolution: choosing between weight-

stationary and output-stationary. The weight-stationary dataflow suf-

fers from high overhead of writing and reading high-bitwidth pointwise

partial sums. The output-stationary dataflow avoids this overhead

by holding partial sums within processing elements, thus achieving

roughly 10× reduction in data movement. This makes it a more ap-

pealing choice for pointwise convolution. 89

4.2 Datatypes and bitwidths processed within a processing element. . . . 97

4.3 Block RAM usage for on-chip GLBs and output buffers. Total size

refers to how much memory our design actively uses for each datatype.

BRAM used refers to how many 18Kb and 36Kb block RAMs are

placed-and-routed in our design by the synthesis and implementation

process. 112

4.4 Impact of FastDepth network modifications on accuracy and data move-

ment (reads and writes to off-chip DRAM). Compared to the original

DNN, our modified accelerator-friendly DNN achieves equivalent accu-

racy with a 21% reduction in DRAM accesses. Quantization to 8-bit

activations and 10-bit weights results in an additional 75% reduction

in data movement, with negligible degradation of accuracy. 127

4.5 Logic utilization of the accelerator deployed on the Ultra96 FPGA. . 143

4.6 FastDepth accelerator runtime and energy efficiency given average power

consumption of 6.1 W. The accelerator achieves real-time inference at

over 30 fps. 149

4.7 Datatypes being streamed into or out of the accelerator, listed along-

side their default and extended bitwidths. DRAM onboard the Ultra96

has a width of 32 bits, thus limiting our stream word size to 32 bits.

We extend datatype bitwidths as necessary to facilitate packing into

32-bit words. 153

23

4.8 Evaluation of our accelerator against FastDepth on Jetson TX2. When

compared to the TX2 CPU, our accelerator achieves about 1.5−2× im-

provement in energy-efficiency. FastDepth on the TX2 GPU, however,

still achieves a higher energy-efficiency due to its much higher sup-

ported framerate. 159

4.9 Evaluation against related accelerators on the Ultra96 SoC. Definition

of task abbreviations: IC = image classification, OD = object detec-

tion, DE = depth estimation. Our accelerator design consumes less

power than many of the cited works, while performing inference at

higher precision on a similar or more complex task. 160

24

Chapter 1

Introduction

Depth sensing is a fundamental task in computer vision, with numerous applications

in 3D reconstruction and robotics. Extracting depth information from input sources

such as digital imagery is a key step in autonomous robot navigation, as it enables

localization of current position within an environment, mapping of the surrounding

environment, and obstacle detection. Traditional depth sensing methods have typi-

cally relied on techniques such as stereo vision, where depth information for an object

is computed from a pair of stereo images by determining differences (or disparities) in

object locations across the images. Other commonly used depth sensing techniques

rely on sensors emitting signal pulses and then computing round trip times upon de-

tecting reflected pulses; examples of these time-of-flight sensors include sonar, radar,

and lidar. These sensors face limitations in range and resolution and tend to be bulky

with high power consumption due to active signal pulsing.

Addressing these depth sensing limitations has motivated research into more com-

pact sensing, e.g., lidar-on-chip [7], as well as more energy-efficient algorithms for

depth estimation from camera imagery. In particular, there has been a significant

and growing interest in depth estimation from a single RGB image, due to the rela-

tively low cost and size of monocular cameras. These cameras can be part of a larger

navigational system including inertial measurement units (IMUs) and low-resolution

depth sensors. Depth estimation from RGB images can be augmented by incorporat-

ing sparse depth measurements coming from onboard depth sensors or from simulta-

25

neous localization and mapping (SLAM) algorithms such as visual-inertial-odometry

(VIO). However, monocular depth estimation remains the more accessible option as it

assumes the presence of just a single camera onboard a navigating robot. This makes

monocular depth estimation more appealing for deployment onto platforms that can

be carried by miniaturized resource-constrained robots, e.g., micro aerial vehicles.

In this thesis, we explore fast and energy efficient monocular depth estimation on

embedded systems. Many state-of-the-art depth estimation approaches are learning-

based, and while they achieve high accuracy rates, they tend to be computationally

complex and unsuitable for real-time, low-power inference. We address this challenge

by developing a monocular depth estimation approach across the entire algorithm-to-

hardware stack. Our approach involves (1) designing a compact deep neural network

(DNN) for monocular depth estimation that achieves competitive accuracy rates at

only a fraction of the size of DNNs in prior works, (2) refining the DNN topology that

defines the shapes of layers within the network and applying hardware-specific compi-

lation to achieve real-time inference on an embedded CPU/GPU, and (3) developing

a custom dedicated dataflow and accelerator design for deployment on a low-power

embedded FPGA to achieve energy efficient inference.

Our work intersects several research fields, including research focused on learning-

based monocular depth estimation, research exploring compact and efficient neural

network design, and research in developing hardware accelerators for deep neural

networks. This chapter introduces these fields and their representative works as well

as key terminology that will be used throughout the thesis.

1.1 Monocular Depth Estimation

In this section, we introduce the problem of monocular depth estimation. We survey

relevant literature on learning-based monocular depth estimation as well as several

related works deploying depth estimation DNNs on embedded systems. We then

discuss limitations of learning-based approaches and highlight application areas to

motivate the work presented in this thesis.

26

Input RGB Image Output Depth Map

Depth Estimation
DNNRGB Image

Dense Depth

farther closer

Figure 1-1: This thesis studies learning-based monocular depth estimation. Left: a
simple visualization of this task, where an input color image is processed to produce
an dense depth map containing depth measurements for every pixel in the image.
Right: a diagram depicting learning-based depth estimation, where a deep neural
network (DNN) is used to predit pixel-wise dense depth from the input image.

1.1.1 Problem Definition

Monocular depth estimation refers to the task of estimating pixel-wise depth mea-

surements from a single two-dimensional color image. The input to this problem is

a 2D RGB color image, and the output is a dense depth map, as illustrated in Fig-

ure 1-1. This task is challenging as it is inherently ill-posed and ambiguous. A 2D

RGB image provides pixel-wise color information, which helps in identifying the rela-

tive placement of objects in the scene; however, the image alone provides no sense of

scale. It is possible to imagine, then, how different RGB images could yield identical

depth maps, e.g., images that maintain relative placement of objects but with scaled

distances in the depth dimension that is perpendicular to the plane of the image.

This presents a challenge for monocular depth estimation algorithms, as they must

infer the proper scale in order to generate accurate pixel-wise depth measurements.

1.1.2 Literature Review

Monocular Depth Estimation

Early works on monocular depth estimation relied on hand-crafted features and prob-

abilistic models [8], as well as non-parametric approaches [9–12]. More recently, the

rise of deep learning and deep neural network algorithms along with their success

on various computer vision tasks (e.g., image classification, object detection) has

27

prompted research in developing learning-based approaches for monocular depth esti-

mation. These approaches typically involve training a convolutional neural network,

a type of deep neural network, on large datasets of RGB image and dense depth map

pairs. Our work in this thesis directly builds upon these methods.

Eigen et al. [13] proposed a two-stage convolutional neural network (CNN) design,

with the first stage predicting the global coarse scale and the second stage refining

local details. In [14], Eigen et al. added a third stage to increase output resolu-

tion and incorporated auxiliary prediction tasks like generating surface normals and

semantic labeling into their depth estimation network. Liu et al. [15] combined a

deep CNN with a continuous conditional random field and attained visually sharper

transitions and local details. Laina et al. [2] developed a deep residual network based

on ResNet [16] and achieved higher accuracy than [14, 15]. Qi et al. [17] trained

networks to jointly estimate both depth and surface normals as a way to enforce geo-

metric consistency between depth and normals in planar regions; this helped address

blurriness in depth output. Semi-supervised [18] and unsupervised learning [19–21]

approaches have also been explored for disparity image prediction. For instance, Go-

dard et al. [21] formulated disparity estimation as an image reconstruction problem,

where neural networks were trained to warp left images to match the right. Mancini

et al. [22] proposed a CNN that took both RGB images and optical flow images as

input to predict distance. Ma et al. [23, 24] explored fusion of RGB images and sparse

depth measurements as input to improve the accuracy of depth estimation.

Popular RGB-Depth Datasets

Several key datasets have been developed for supervised training of neural networks

for tasks like scene segmentation and depth estimation. Two of the most popular

datasets for depth estimation include:

∙ the NYU Depth v2 dataset [25], containing pairs of RGB color images and

densely labeled depth maps recorded in a variety of indoor scenes with the

Microsoft Kinect [26] (a structured-light sensor).

28

∙ the KITTI dataset [27], containing RGB and depth pairs from outdoor road

scenes, with ground truth depth collected using a Velodyne [28] lidar scanner.

The evaluations presented in this thesis are primarily done on NYU Depth v2.

Commonly-Used Evaluation Metrics

Many evaluation metrics have been used to evaluate monocular depth estimation

methods. A few examples are absolute relative difference (AbsRel), squared relative

error (SqRel), and root mean squared error (RMSE) [29]. These are defined as:

AbsRel =
1

𝑁

∑︁ |𝑑𝑛 − 𝑑*𝑛|
𝑑𝑛

(1.1)

SqRel =
1

𝑁

∑︁ |𝑑𝑛 − 𝑑*𝑛|2
𝑑𝑛

(1.2)

RMSE =

√︂
1

𝑁

∑︁
|𝑑𝑛 − 𝑑*𝑛|2 (1.3)

where 𝑑𝑛 and 𝑑*𝑛 are the ground truth and predicted depth values at a given pixel

𝑛 and 𝑁 is the total number of pixels. Another common metric is the 𝛿𝑖 accuracy

that reports the percentage of pixels where the relative error is within a threshold:

𝛿𝑖 = % of 𝑑𝑛 such thatmax

(︂
𝑑𝑛
𝑑*𝑛

,
𝑑*𝑛
𝑑𝑛

)︂
< 1.25𝑖 (1.4)

When evaluating depth estimation methods in this thesis, we primarily use RMSE

and the 𝛿1 accuracy, i.e., the percentage of pixels that have predicted depth values

within 25% of ground truth values. Of these, RMSE is more intuitive when gauging

the accuracy of a particular depth estimation method during inference, since it indi-

cates roughly how bad a depth prediction can get, e.g., whether on the order of a few

centimeters or a few meters. The 𝛿1 accuracy metric is less intuitive as it does not

indicate the magnitude of how inaccurate depth values outside the threshold may be.

29

Learning-Based Depth Estimation on Embedded Systems

As deployment of depth estimation DNNs in practical settings grows in importance,

research focus is beginning to shift to compact depth estimation DNN design, tar-

geting inference on embedded platforms. For instance, Poggi et al. [30] designed

a pyramid-structure network consisting of network levels inferring depth at varying

resolutions; their resulting PyD-Net successfully ran on an embedded ARM CPU on-

board the Raspberry Pi 3, performing monocular depth inference on a KITTI dataset

image in about 1.7 s. Another work, AnyNet [31], focused on stereo depth estimation

and used a similar multi-stage structure computing feature maps at various output

resolutions; the authors additionally incorporated a U-Net [32] feature extractor and

disparity networks at different resolution stages to gradually refine disparity maps

between left-right stereo image pairs. The multi-stage structure in AnyNet allowed

for it to be queried at any time to output its best depth prediction at that moment;

this produced a range of supported framerates. AnyNet was deployed onto NVIDIA’s

Jetson TX2 module, achieving 10−35 fps on KITTI inference. More recently, in [33],

Wang et al. made use of depthwise and pointwise layers and relied on automated

network architecture search1 to create their compact monocular depth estimation

network; their resulting DepthNet Nano was then deployed onto NVIDIA’s Jetson

AGX Xavier module, achieving framerates of 8.8 fps on NYU Depth v2 and 7.7 fps

on KITTI with power consumption of 15 W.

Our work on FastDepth, described throughout this thesis, focuses on monocular

depth estimation on embedded systems. Instead of a multi-stage network producing

predictions at different scales or resolutions, we use a more linear encoder-decoder

structure that is primarily composed of efficient depthwise separable convolutional

layers. We too target real-time inference on NVIDIA’s Jetson TX2 module, though

not only on the TX2 GPU but also on the TX2 CPU. We also take deployment

two steps further: first by running FastDepth live on a mobile phone, and then by

accelerating FastDepth on an embedded FPGA for reduced power consumption.

1Techniques to create compact neural networks, such as incorporating depthwise or pointwise
layers and using network architecture search, will be discussed in Section 1.2.2.

30

Limitations of Learning-Based Approaches

Learning-based approaches for depth estimation face several limitations. One is in-

herent to how neural networks learn to perform tasks. In supervised training, a DNN

is typically trained over a task- and environment-specific dataset. Upon successful

training, the DNN will learn to perform similar tasks as it had seen in the dataset.

As a case example, depth estimation DNNs that are trained on indoor datasets learn

to estimate depth on an indoor scale (e.g., on the order of a few meters) and will not

accurately estimate depth in outdoor scenes (where depths are on the order of, say,

tens or hundreds of meters). This can be interpreted as the DNN learning a global

scaling factor by which to predict dense depth measurements. Since this is highly de-

pendent on the training dataset used, it presents a limitation in the interoperability

of trained depth estimation DNNs across environments. Research into depth transfer

learning or training over mixed datasets is being explored [34–36].

Another limitation is consistency of pixel-wise depth accuracy across time, e.g.,

when a video stream is passed through the depth estimation DNN. If the DNN does

not contain any memory-like or feedback-like elements in its design, every consecutive

input image will be analysed independently. Similar regions across consecutive frames

will not always have similar depth estimates, e.g., due to noise, slight variations

in lightning, occlusions, different depth ranges introduced by new objects at image

edges, etc. This can manifest as flickering in frame-by-frame depth maps produced

by the DNN. Some works [37, 38] have sought to resolve this and enforce temporal

consistency in depth output by inserting long short term memory (LSTM) blocks or

feedback loops into their designs. However, more research into this is still needed to

improve the robustness and practicality of depth estimation DNNs.

Applications of Depth Estimation

Depth estimation is critical for many robotics applications, especially navigation.

It is often a key step in localization and mapping (SLAM) algorithms, and several

works have incorporated learning-based depth estimation into SLAM frameworks,

31

e.g., CNN-SLAM [39]. Depth estimation is also a key step in 3D reconstruction

algorithms, with applications such as augmented reality and medical imaging [40, 41].

Monocular depth estimation becomes important when we consider miniaturized

robots that are power-constrained, resulting in weight and compute constraints. The

onboard sensor technology on such robots may be limited to a simple RGB camera,

and no additional information (e.g., stereo image pairs, IMU measurements, sparse

depth point clouds, optical flow) may be present. For such an application, the ability

to estimate dense depth from just a single RGB image in a computationally efficient

manner becomes a challenge and a goal.

1.2 Efficient Neural Network Design

One of the disadvantages of state-of-the-art deep learning approaches for monocular

depth estimation is that they have become increasingly complex; networks are often

designed for higher accuracy, leading to models that are deeper, contain larger layers,

or involve additional post-processing. These all increase a network’s computational

complexity, which then increases the latency (runtime) and power consumption cost

of running the network on hardware. Latency and power cost become especially crit-

ical when deploying neural networks for time-sensitive applications, e.g., autonomous

navigation, that require real-time processing. For instance, consider a small robotic

vehicle trying to navigate its environment, using depth output from a DNN to sense

its surroundings and help plan its motion. If the depth estimation DNN is too slow,

the robot will misinterpret obstacles and crash. If the DNN consumes too much

power, there will be less power available for other computing tasks, limiting how

much or how far the robot can explore. This example highlights the need for efficient

neural network design that seeks to balance tradeoffs between accuracy, computa-

tional complexity, latency, and power consumption. In our work, the target latency

for single-image DNN processing is under 40 ms as this enables framerates above 25

fps, which is considered real-time. Our target power consumption is defined by the

types of embedded devices we deploy on, e.g., embedded CPU/GPU platforms can

32

consume on the order of 10−20 W, while a custom hardware design on a small FPGA

can lower power consumption to under 5 W.

In this section, we provide a brief overview of deep neural networks, followed by a

literature review of work on compact neural network architectures. We also discuss

research on steps that can be taken after network training to further reduce network

complexity and latency while maintaining accuracy. Several of the design methods

described in this section are utilized in our own work presented later on in this thesis.

1.2.1 Overview of Deep Neural Networks

Deep neural networks consist of many interconnected layers that emulate functions

of biological neurons. The topology of a DNN is inspired by the structure of the

human visual system, so that processing performed by the DNN on a visual input

mimics the human’s response to similar stimuli. During training, DNNs extract high-

level features from raw sensory data and learn over a large set of training data to

obtain a representation of the input that can be used to infer information about new

data. Running inference using successfully trained DNN models can then yield highly

accurate classification and regression results [1]. This section describes different types

of layers and convolutions found in these DNN models.

Layer Types

As DNNs have grown in complexity over time, numerous layer types have developed.

We narrow down to those most commonly used in DNNs:

Convolutional layers perform high-dimensional convolutions on input feature

maps and sets of filters to produce output feature maps. A feature map is just a

collection of data in a 4D tensor with shape 𝑁×𝐶×𝐻×𝑊 .2 Table 1.1 summarizes

what these shape parameters mean. Figure 1-2 illustrates the convolution performed

by this layer. Activations from input feature maps passed into the layer consist of

2This format may vary for different deep learning frameworks, e.g., PyTorch [42] uses NCHW
format by default, while TensorFlow [43] uses NHWC format by default. Conversion between such
formats can be done through a simple permutation of dimensions.

33

Shape Parameter Description of Parameter
𝑁 batch size of feature maps
𝐶 number of channels in input feature map
𝑀 number of filters (and channels in output feature map)

𝐻/𝑊 height and width of input feature map
𝐻𝑇/𝑊𝑇 height and width of input feature map tile
𝑅/𝑆 height and width of filter
𝑃/𝑄 height and width of output feature map

𝑃𝑇/𝑄𝑇 height and width of output feature map tile

Table 1.1: Shape parameters for layers in a DNN alongside their descriptions.

𝐶 channels of 2D features. These are convolved with weights from 𝑀 filters, where

each filter contains 𝐶 channels. Each channel of the input feature map is convolved

with a single filter channel; the results from these 𝐶 convolutions are then added

element-wise to produce a single output feature map. Since there are 𝑀 filters, the

convolutional layer produces 𝑀 total output feature maps per every batch of input

feature maps. Batch sizes can be increased to benefit from filter reuse; in this scenario,

the layer will produce an 𝑁 -sized batch of 𝑀 output feature maps each.

The operations taking place in convolutional layers are multiplications of filter

values with input activations and accumulations of products in the spatial and channel

dimensions. In combination, these are referred to as MAC (multiply-accumulate)

operations. Once the MACs for a given feature map channel have been completed, a

bias may be added at the output of the layer. The same bias value gets applied to an

entire channel and simply shifts the channel values in a positive or negative direction.

In this case, the layer will contain 𝑀 biases, one per output channel.

Fully connected layers can be interpreted as special cases of convolutional

layers; they too convolve input feature maps with filters, but in this case, the filter

dimensions match those of the input feature map; that is, in fully connected layers,

𝑅=𝐻, 𝑆=𝑊 , 𝑃=𝑄=1. With a batch size of 1, the output of this layer is just

a 1-dimensional 𝑀 -sized vector. Fully connected layers are often placed towards

the end in networks performing classification tasks, where the output is a vector

of classification estimates. They are less common in networks for regression tasks

34

H

W

C

C

S
R

M

M P

Q

M

Input Feature Map

Filter

Bias Output Feature Map

Figure 1-2: Diagram of a convolutional layer. Each of the 𝑀 filters is first convolved
channel-by-channel with the input feature map. The results are then added element-
wise to yield a single output channel. This repeats for all 𝑀 filters, producing 𝑀
output channels in total. Output channels may be subject to a channel-wide bias
that is added after convolution.

producing multi-dimensional feature maps, e.g., depth maps, at the output end.

Non-linearity functions — also called activation functions — are typically ap-

plied after a convolutional or fully connected layer. They are used to introduce non-

linearity into the computation performed by the neural network, allowing the network

to learn more complex representations. A commonly-used non-linearity function is

the Rectified Linear Unit, or ReLU, that zeroes out negative values in a feature map.

It can be represented as the function 𝑦 = max (0, 𝑥).

Pooling layers operate on a channel-by-channel basis and reduce the height and

width dimensions of a feature map by consolidating values in regions of the feature

map (e.g., by taking the maximum value in a region, or averaging them).

Normalization layers help control the feature map distributions throughout

the network by normalizing them using parameters learned during training; these are

commonly applied after convolutional and fully connected layers.

35

Convolution Types

The convolution depicted in Figure 1-2 can be thought of as standard convolution,

since it has been a standard layer in many early image classification DNNs. As

described earlier, this convolution operates on 𝑅×𝑆×𝐶×𝑀 filters, a product that

grows as dimensions 𝐶 and 𝑀 grow within the network. The total number of feature

map activations generated during the convolution is 𝐻×𝑊×𝐶×𝑀 .

In an attempt to reduce this number of activations as well as the number of filter

weights, works like [44] and [45] have explored replacing standard convolutional layers

with depthwise separable layers, as shown in Figure 1-3. These layers essentially

factorize a standard convolution into two smaller ones: a depthwise convolution

that uses 𝐶 single-channel filters and performs channel-wise convolution, followed by

a pointwise convolution that uses 𝑀 filters, each of shape 1×1 with 𝐶 channels,

performing element-wise channel aggregation. This reduces the number of activations

generated between the two convolutions to just 𝐻×𝑊×𝐶. The number of filters is

also reduced to 𝑅×𝑆×1×𝐶 for the depthwise filter and 1×1×𝐶×𝑀 for the pointwise

filter. In this manner, depthwise separable layers require less parameters, generate

less feature map data, and are less computationally costly, making them more likely

to achieve higher efficiency3 than standard convolutional layers.

1.2.2 Compact Network Architecture Design

The compactness and efficiency of a deep neural network factors into how well-

suited the DNN is for practical applications. Oftentimes, inference latency and

power consumption are of concern, especially when deploying networks onto resource-

constrained mobile and embedded devices. This has motivated an abundance of work

centered around compact network architecture design, i.e., streamlining neural net-

work topologies by modifying shape parameters, while still targeting high accuracy.

Methods used to design compact and efficient neural networks can be grouped into

manual network design and automated network architecture search (NAS).
3Here, we define efficiency as the amount of computation performed on a given energy budget.

Less computation with less data movement leads to shorter runtime and improved energy efficiency.

36

M standard conv filters

C single-channel
depthwise filters

M multi-channel
pointwise filters

Standard Convolutional Layer

Depthwise Separable
Convolutional Layer

C

Figure 1-3: A depthwise separable layer factorizes a standard convolution into two
smaller ones: a depthwise convolution performing channel-wise convolution, and a
pointwise convolution performing element-wise channel aggregation.

Manual Network Design

Manual network design refers to manually creating efficient building blocks out of

which a neural network is to be constructed. This often involves simplifying network

layers. The layer most prevalent in convolutional neural networks is the standard

convolutional layer. This type of layer can be simplified in various dimensions. The

spatial dimensions (height and width) can be reduced by replacing larger kernels with

smaller ones — for instance, Simonyan et al. [46] proposed replacing 5×5 kernels with

cascaded 3×3 kernels, while Szegedy el al. [47] showed that 𝑀×𝑀 convolutions can

be replaced with cascaded 1×𝑀 and 𝑀×1 kernels. The channel dimensions of a layer

can be reduced through bottleneck layers and group convolutions:

Bottlenecks can be inserted into a network in the form of 1×1 pointwise convo-

lutional layers with the number of output channels being lower than the number of

input channels. In deep ResNets [16], He et al. inserted 1×1 layers before and after

3×3 convolutional layers, thus allowing for lower input and output channel dimen-

sionality of the 3×3 layers. In SqueezeNet [48], Iandola et al. introduced modules

consisting of 1×1 layers that reduce feature map channel dimensions (squeezing the

network), and combinations of 1×1 and 3×3 layers that later increase channel dimen-

sions (expanding the network).

37

H

W

C

P

Q

C

CC

S
R

P

Q

C

P

Q

M

C

1
1

M

M

Input Feature Map Depthwise
Filter

Depthwise
Bias

Depthwise Output

Depthwise Output Pointwise Output

Pointwise Filter

Pointwise Bias

(a) depthwise convolutionH

W

C

P

Q

C

CC

S
R

P

Q

C

P

Q

M

C

1
1

M

M

Input Feature Map Depthwise
Filter

Depthwise
Bias

Depthwise Output

Depthwise Output Pointwise Output

Pointwise Filter

Pointwise Bias

(b) pointwise convolution

Figure 1-4: Diagram of a depthwise separable layer. This type of layer consists of a
depthwise convolution shown in (a) and a pointwise convolution shown in (b).

38

Group convolutions divide filters within the convolution into multiple groups

that then operate on distinct subsets of the input feature map. This yields a reduction

in parameters (filter weights) and MAC operations. First introduced in AlexNet [49],

group convolutions were then adopted in [44, 50]. Channel-wise convolution, also re-

ferred to as depthwise convolution, is an extreme case of group convolution where the

number of groups equals the number of input channels such that each group has only

one filter. Depthwise convolution can be directly followed by pointwise convolution in

what forms a depthwise separable layer, as described earlier in Section 1.2.1. Howard

et al. [45] leveraged this concept to develop a family of MobileNets — highly efficient

networks suitable for mobile applications. Sandler et al. further improved on this by

introducing bottleneck layers into the networks in MobileNetV2 [51].

Automated Network Architecture Search

A significant difficulty in manual network design is its tedious process, involving many

design steps, e.g., selecting the number of layers, the types of layers, the ordering and

connections between layers, as well as a multitude of hyper-parameter settings dur-

ing training. Recent research efforts have sought to automate this process through

Network Architecture Search (NAS). At the core of NAS is an optimization algo-

rithm that samples network architectures from a search space, evaluates them, and

subsequently decides which network architectures to sample next. The algorithm is

iterative and continues until a network design meeting specified criteria is discovered.

Some NAS frameworks have sought to take target hardware platforms into ac-

count alongside neural networks. In NetAdapt [4], Yang et al. proposed an algorithm

that progressively simplifies a pretrained network while maximizing accuracy until a

resource budget is met; to guide the simplification process, NetAdapt incorporates

empirically-evaluated metrics, e.g., measured latency or energy consumption, into

its algorithm. In MNasNet [52], Tan et al. presented an approach for designing

resource-efficient mobile CNN models using reinforcement learning; their approach

incorporated platform-aware latency measurements into the search process and used

a hierarchical search space that encouraged layer diversity to explore trade-offs be-

39

tween accuracy and latency. MNasNet was subsequently used in the development of

MobileNetV3 [53] that had fewer MACs and saw improvements in the accuracy vs.

latency tradeoff curve over MobileNetV2 [51].

1.2.3 Network Pruning

Hand-crafted networks tend to be over-parameterized during training, which results

in a large network footprint and reduces network efficiency. To address this, network

pruning [54–59] has emerged as a technique to identify and remove redundant pa-

rameters. The pruning process can be applied to different aspects of convolutional

layers, e.g., filter weights can be pruned by being set to zero, and channels can be

pruned away by reducing channel dimensions in filters. This results in layers with

fewer channels or sparser filters, making the neural network more compact overall.

The pruning process can also be guided by different target metrics, e.g. an energy

consumption estimate of a weight [60]. Lastly, as proposed in NetAdapt [4], pruning

may take a target hardware platform into account by incorporating metrics such as

simulated or empirically-measured latency and energy consumption on hardware.

Network pruning is typically applied after a neural network is trained. Since prun-

ing removes parameters from the network, it often results in some accuracy loss. As

part of the pruning process, gradually-pruned networks undergo fine tuning (retrain-

ing) in an attempt to restore some of the accuracy and to ensure that each pruning

step degrades as little accuracy as possible. Sometimes, network pruning may even

slightly increase the accuracy of the network if the originally-trained network hap-

pened to have overfitted to a training set; this is because the reduction of parameters

via pruning will have lessened the effect of the overfit. Additionally, since pruning ef-

fectively changes layer shapes within a network, it can be viewed as a form of network

architecture search (NAS), with the pruned network architecture being the discovered

network that can be initialized and trained from scratch.

As pruning methods have developed, they have been mainly applied and tested

on image classification networks. It is reasonable to expect that pruning methods will

soon be applied more frequently to depth estimation DNNs to generate lightweight

40

networks that are more easily deployable, as in [61].

1.2.4 Network Quantization

Common deep learning frameworks such as PyTorch [42] and TensorFlow [43] pre-

dominantly support training and inference in 32-bit floating point precision. However,

the desire to reduce data bandwidth and computational cost of running neural net-

work onboard embedded devices has motivated research into inference at reduced

precisions. This reduction in precision of data is referred to as quantization.

A direct benefit of network quantization is reduced bandwidth and storage re-

quirements for inference, e.g., quantizing weights and activations from 32-bit floating

point to 8-bit integer lowers both bandwidth and storage needs by 4×. Another bene-

fit is compute speedup, as hardware units for integer operations tend to be faster and

less area costly than those for floating point operations. Hence, quantization leads to

improved area and energy efficiency [62].

The process of quantizing values involves mapping them into a smaller set of

quantization levels. These levels can be evenly spaced out (uniform quantization) or

they may be assigned according to a non-uniform, e.g., logarithmic, distribution (non-

uniform quantization). Quantization methods fall into one of these two categories.

Over the past several years, there has been an abundance of research into network

quantization at various bitwidths [63–65]. Quantizing to 16 bits or 8 bits has grown

common, though a few works have explored quantization as low as 2 bits [66, 67] and

1 bit [68, 69]. A significant challenge faced with quantizing to such low precision is

maintaining network accuracy, since reduced precision limits how well a quantized

network can approximate the non-quantized network. It may be possible, however,

to restore some lost accuracy through fine-tuning or retraining after quantization.4

Quantization schemes can also vary in how coarse-grained or fine-grained they

4One of the challenges with quantization-aware training is backpropagation through quantization
functions that usually resemble a step function and have a derivative of 0 almost everywhere. One
way to bypass this challenge is to use straight-through estimators [70, 71], which passes the gradient
through. There is currently limited support for quantization-aware training in commonly used
frameworks like PyTorch and TensorFlow.

41

are. Coarse-grained schemes may quantize on a tensor-wise basis, using the range

across all tensor dimensions to determine quantization levels. Finer-grained schemes

may quantize tensors sliced along the certain dimensions, e.g., on a channel-wise

basis. Quantization schemes may use different target bitwidths for different datatypes,

or even vary these datatype bitwidths on a layer-per-layer basis. Increasingly fine-

grained schemes will result in lower accuracy degradation but incur a higher hardware

complexity cost, as the hardware compute engine will need to flexibly support variable

bitwidths. This is more feasible with custom hardware design, e.g., UNPU [72] was

designed to support variable precision (at least for a single datatype).

Quantization together with pruning have great potential for reducing the size of

a neural network. Both were shown to be valuable steps in compressing a neural

network for efficient inference on embedded systems [73].

1.3 Accelerators for Deep Neural Networks

Embedded platforms typically have tight energy, compute, and memory constraints.

For successful on-platform DNN inference in light of these constraints, efficient pro-

cessing becomes paramount. There are two key factors affecting the processing of

DNNs: compute parallelism and data movement. The types of hardware architec-

tures that are used to run DNN inference can be analysed with respect to these factors.

More general-purpose hardware, such as CPUs and GPU, tend to have temporal ar-

chitectures that employ techniques such as vector processing and multithreading to

increase compute parallelism. More specialized hardware, such as FPGAs and ASICs

use spatial architectures that exploit data reuse and take advantage of low-to-high

cost memory hierarchies to reduce the net cost of data movement.

1.3.1 CPU and GPU Acceleration

CPUs and GPUs support high levels of compute parallelism through vector instruc-

tions (SIMD, or single instruction, multiple data), multithreading (SIMT, single in-

struction, multiple threads), and multiprocessing (dividing computation across mul-

42

tiple cores). CPUs tend to operate in the GHz frequency range and may contain up

to tens of processing cores. GPUs tend to operate at lower frequencies in high MHz

range but contain far more processing cores — on the order of hundreds to thousands

of cores. Both have largely fixed storage hierarchies consisting of multi-leveled caches,

e.g., L1, L2, L3, etc. GPUs also make use of local memory blocks within streaming

multiprocessors as well as shared memory between multiprocessors.

When running DNNs on CPUs and GPUs, acceleration primarily comes from opti-

mized matrix multiplications for computing MACs. There are many software libraries

that perform these optimizations. Convolutions in DNN layers can undergo transfor-

mations such as tiling, unrolling, etc, to generate large matrix-matrix multiplications.

Additional computational transforms that can be applied for further acceleration in-

clude FFT [74], Strassen [75], and Winograd [76, 77] transforms. The final matrix

operations can then be optimized through software libraries, e.g., OpenBLAS [78] for

CPUs, cuBLAS [79] and cuDNN [80] for GPUs. However, a drawback of relying on

these libraries is that they are general-purpose and therefore less likely or more diffi-

cult to adapt for operators or convolutions emerging in newer deep learning models;

that is to say, as the rapid development of DNNs in research and academia continues,

general-purpose compilation libraries fall behind [81]. This is motivating work on

dedicated neural network compilers, as will be discussed in Section 1.3.3.

CPUs and GPUs, ranging from server-level to embedded-level, have evolved to

support deep learning applications. Intel’s line of latest Xeon Phi processors feature

Advanced Vector Extensions (AVX) that benefit floating-point multiply-and-add op-

erations. Deep learning oriented GPUs from NVIDIA include the Tesla brand in-

corporating architectures such as the Maxwell K80, the Pascal P100, and the Volta

V100. Similar offerings from AMD include the Radeon Instinct brand. Larger server

systems like NVIDIA’s DGX [82] have been designed entirely for deep learning ac-

celeration, notably for DNN training. On the other spectrum, smaller systems like

NVIDIA’s Tegra SoCs5 have been designed to support DNN inference, allowing for

5The Jetson TX1 [83] incorporates 4 ARM CPU cores and 256 Maxwell GPU cores. The Jetson
TX2 [84] incorporates 6 ARM cores and 256 Pascal cores. Both are aimed at DNN inference only.
Power consumption is around 10-20 W when busy, orders of magnitude less than GPU server systems.

43

deployment of DNNs on embedded platforms with much lower power consumption.

1.3.2 FPGA and ASIC Acceleration

In addition to supporting high compute parallelism, FPGA (field-programmable gate

array) and ASIC (application-specific integrated circuit) accelerators allow for flex-

ibility in memory hierarchy design and in dataflow design, i.e., specifying how data

flows through the compute elements. This distinguishes FPGAs and ASICs from

CPUs and GPUs where the dataflow and memory hierarchy are not customizable.

Since data movement significantly contributes to energy consumption during DNN

processing [1], this factors into FPGA and ASIC accelerators generally achieving lower

energy consumption during than CPUs or GPUs.

There are several aspects that further distinguish between FPGAs and ASICs. It

is typically cheaper to program a prototype accelerator on an FPGA than to design

and tape-out a prototype ASIC. FPGA designs are more easily adjustable due to their

programmable interconnect of logic nets, while ASIC designs are fixed after tape-out

and can only be reconfigured if reconfigurability was built in. However, ASICs allow

for more customizable clock tree design and placement of logic nets (in contrast to the

already-placed fabric on FPGAs). Hence, ASIC designs may achieve higher speeds

with lower power consumption than equivalent FPGA designs.

FPGAs and ASICs have become appealing choices for datacenters offering DNN

acceleration as a service in the cloud. Google’s Tensor Processing Unit (TPU) [85]

and Microsoft’s Brainwave Neural Processing Unit (NPU) [86] are examples of ac-

celerators designed for datacenter applications. ASICs dedicated for deep learning

tasks are also becoming increasingly commonplace in consumer produces such as

mobile phones, e.g., Apple’s Neural Engine (ANE) [87] and Qualcomm’s Artificial

Intelligence Engine [88]. In academia, both FPGA-based and ASIC-based accelerator

design for DNN processing has grown in popularity, with numerous hardware archi-

tectures for various deep learning domains being proposed every year [72, 89–97].

44

1.3.3 Neural Network Compilers

As mentioned earlier in Section 1.3.1, the general-purpose nature of CPU and GPU

compilers makes it more difficult for them to support an increasing number and variety

of operator types (e.g., different convolutional layers) in deep learning models. This

has motivated the development of compilers dedicated to neural network acceleration.

Neural network compilers can be described in two parts: the compiler frontend and

the backend. The frontend takes a DNN model from a deep learning framework and

transforms it into a computation graph. Each node in such a graph represents a

layer operation that takes in one or more tensors and produces one or more tensors;

connections between nodes represent dataflow dependencies between operations [98].

This computation graph is also referred to as a high-level intermediate representation

(IR) and is hardware-agnostic. The backend then takes this high-level IR and converts

it into what is then called a low-level IR. Hardware-specific optimizations, e.g. layer

and tensor fusion, kernel transformations, tiling, loop unrolling, etc, are performed

at this low-level stage. The low-level IR reflects hardware-specific characteristics and

may be further converted to be compatible with existing compilation toolchains such

as LLVM for CPUs and CUDA for NVIDIA GPUs. The optimized low-level IR is

finally compiled into an executable that can be directly run on a hardware target [81].

Current deep learning frameworks mostly implement DNN optimizations at the

graph level. However, this is too high-level to be able to handle hardware-specific

operator implementations. In some cases, the underlying operator implementations

are optimized for runtime and efficiency on server-class systems; in other cases, frame-

works rely on operator libraries that require manual tuning (exploring and selecting

optimally-performing design knobs for each operator). These predefined operator

libraries can then limit how well the DNN computation graph is optimized, e.g.,

if graph-level changes yield new operators not present in the libraries. All in all,

this precludes operator implementations from being portable across a diverse set of

hardware targets and may result in under-optimized operator or layer execution on

hardware [98]. One way in which unoptimized execution manifests itself is in layers

45

not speeding up when computation is reduced. This has been observed with depthwise

separable layers: although depthwise decomposition results in fewer parameters and

MACs than in a standard convolutional layer, that has not translated to a runtime re-

duction. Using a compiler that performs both graph- and operator-level optimizations

(instead of relying on a predefined operator library) helped to resolve this [98, 99].

The increase in target platform types (e.g., CPUs, GPUs, TPUs, FPGAs, etc.),

has spurred research into compilers for deep learning applications across all of these

platforms. TensorFlow’s XLA (Accelerated Linear Algebra) [100] optimizes Tensor-

Flow models by generating computation kernels unique to a given model and fusing

them, instead of relying on precompiled GPU kernel implementations. NVIDIA’s

TensorRT [101] is compatible with a variety of deep learning frameworks, performs

graph-level optimizations, and supports precision calibration for lower-precision infer-

ence; it primarily targets deployment on CUDA-compatible GPUs. The AutoTVM

project [98] offers a compiler stack that too supports multiple deep learning frontends

as well as multiple backends targeting both CPUs and GPUs. The TVM compiler

uses a learning-based optimization approach for hardware-specific operator tuning.

Xilinx’s Vitis AI development kit [102] incorporates a compiler that targets deploy-

ment of DNN models on newer Xilinx FPGAs. Additional examples of DNN compilers

include Tensor Comprehensions [103], nGraph [104], and Glow [105].

1.3.4 Dataflow-Based Accelerator Design

Developing a dataflow is a key step in designing accelerator hardware for DNNs. In

the context of DNN processing, a dataflow refers to how MAC operations within

a DNN layer are ordered and how inputs and outputs to and from the layer are

transferred. Dataflow design involves exploring how temporal and spatial reuse of

data can be leveraged to reduce energy costs of data movement and to improve the

energy efficiency of the DNN accelerator built to enable that dataflow.

46

Leveraging Data Reuse

There are two aspects to consider in leveraging data reuse: what data is reused,

and how the data reuse is exploited. As part of a convolutional operation, there is

potential for various operands to be reused, e.g., input activations, or filter weights,

or both. Input feature map reuse arises from different filters being applied to the

same input feature map channels to produce different output feature map channels.

Filter reuse arises from batching, where the same filters are applied to all input feature

maps within a batch. Convolutional reuse arises from the sliding window action when

performing a convolution — as a filter slides across an input feature map, both the

filter weights and input activations are reused.

Data reuse may be exploited in a temporal or a spatial manner. Temporal data

reuse refers to a particular data value being used multiple times by the same compute

element. This reuse is often exploited via a memory hierarchy, where highly-reused

data is stored in smaller memory blocks closer to the compute element; this allows

for faster and less costly memory accesses for that highly-reused data. Data with less

reuse is stored in larger memory blocks farther away from the compute element. Data

that cannot fit into the limited storage capacity within the memory hierarchy is stored

off-chip in external memory, e.g., in DRAM. Spatial data reuse refers to a particular

data value being used by multiple compute elements at the same time. This reuse

is often exploited via multicasting, where the highly-reused data is read once from

memory and sent to many compute elements. Multicasting requires a one-to-many

network to be established between memory and compute elements.

As with any major design choice, leveraging data reuse comes with design trade-

offs. For instance, temporal data reuse may motivate complex multi-level memory hi-

erarchies, where additional memory levels may increase area and access latency. Spa-

tial data reuse may motivate a complex network-on-chip connecting memory blocks

to large arrays of compute elements, resulting in more interconnect overhead.

47

Dataflow Taxonomy

This section summarizes different dataflows that have emerged in recent DNN accel-

erators [106]. Each dataflow variant seeks to exploit a different data reuse pattern.

The weight stationary dataflow (Figure 1-5(a)) aims to minimize the energy

cost of reading filter weights by exploiting filter reuse; weights are stored and kept

stationary within the processing elements (PEs) that perform MAC operations. Com-

putation of MACs is ordered such that weight values within a PE are reused as much

as possible before getting overwritten with new values. An example accelerator that

implements the weight stationary dataflow is NVIDIA’s Deep Learning Accelerator

(NVDLA) [107], where weights are stored within the convolution engine in a dedi-

cated buffer. Microsoft’s BrainWave [86] also follows a weight stationary dataflow,

using a pinning strategy that keeps model weights in on-chip memory for high read

bandwidth. The output stationary dataflow (Figure 1-5(b)) aims to minimize the

energy cost of partial sum movement. These partial sums are generated as MACs

are being computed and aggregated across spatial and channel-wise dimensions. The

input stationary dataflow (Figure 1-5(c)) exploits input feature map reuse; input

activations are stored and kept stationary within PEs, and computation of MACs is

ordered such that each activation is maximally reused.

Unlike the above dataflows that cater to a specific datatype, the row stationary

dataflow instead aims to maximize overall convolutional reuse of all datatypes. In-

troduced in Eyeriss [106], this dataflow keeps a row of filter weights stationary within

a PE and streams a row of input activations through. The PE performs 1D convolu-

tion; it computes multiplications over the stored rows and accumulates them locally

within the PE. Due to the sliding window nature of convolutions, input activations

get reused along with the stationary row of weights. Upon sliding through the entire

row of inputs, the PE completes the partial sums for this row. This dataflow therefore

maximizes both input feature map and filter reuse as well as localized accumulation

of partial sums. It was shown to be more energy-efficient on convolutional layers than

the previously described dataflows [106]. Figure 1-6 illustrates convolutional reuse in

48

6.7. DATAFLOW TAXONOMY Sze, Chen, Yang, Emer

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

PsumAct

PE
Weight

(a) Weight Stationary

Global Buffer
Act Weight

PE
Psum

P0 P1 P2 P3 P4 P5 P6 P7

(b) Output Stationary

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight

(c) Input Stationary

Figure 6.12: The taxonomy of commonly-seen dataflows for DNN processing.

80

(a) weight stationary

6.7. DATAFLOW TAXONOMY Sze, Chen, Yang, Emer

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

PsumAct

PE
Weight

(a) Weight Stationary

Global Buffer
Act Weight

PE
Psum

P0 P1 P2 P3 P4 P5 P6 P7

(b) Output Stationary

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight

(c) Input Stationary

Figure 6.12: The taxonomy of commonly-seen dataflows for DNN processing.

80

(b) output stationary

6.7. DATAFLOW TAXONOMY Sze, Chen, Yang, Emer

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

PsumAct

PE
Weight

(a) Weight Stationary

Global Buffer
Act Weight

PE
Psum

P0 P1 P2 P3 P4 P5 P6 P7

(b) Output Stationary

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight

(c) Input Stationary

Figure 6.12: The taxonomy of commonly-seen dataflows for DNN processing.

80

(c) input stationary

Figure 1-5: Diagrams showing different dataflows. Each dataflow variant aims to
exploit data reuse of a different datatype. Figures taken from [1].

49

6.7. DATAFLOW TAXONOMY Sze, Chen, Yang, Emer

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

Figure 6.20: 2-D convolutional reuse within spatial array for Row Stationary Dataflow [121].

mapper) to perform this optimization off-line to configure the hardware for different mappings of the RS
dataflow for different DNNs as shown in Figure 6.22.

One example that implements the row stationary dataflow is Eyeriss [120]. It consists of a 14⇥12 PE array,
a 108KB global buffer, ReLU and fmap compression units as shown in Figure 6.23. The chip communicates
with the off-chip DRAM using a 64-bit bidirectional data bus to fetch data into the global buffer. The global
buffer then streams the data into the PE array for processing.

In order to support the RS dataflow, two problems need to be solved in the hardware design. First, how can
the fixed-size PE array accommodate different layer shapes? Second, although the data will be passed in a
very specific pattern, it still changes with different shape configurations. How can the fixed design pass data
in different patterns?

Two mapping strategies can be used to solve the first problem as shown in Figure 6.24. First, replication
can be used to map shapes that do not use up the entire PE array. For example, in the third to fifth layers
of AlexNet, each 2-D convolution only uses a 13⇥3 PE array, where 3 is ther filter height (R) while 13 is
the output feature map height (E). This structure is then replicated four times, and runs different channels
and/or filters in each replication. The second strategy is called folding. For example, in the second layer
of AlexNet, it requires a 27⇥5 PE array to complete the 2-D convolution. In order to fit it into the 14⇥12
physical PE array, it is folded into two parts, 14⇥5 and 13⇥5, and each are vertically mapped into the
physical PE array. Since not all PEs are used by the mapping, the unused PEs can be clock gated to save
energy consumption.

A custom multicast network is used to solve the second problem about flexible data delivery. The simplest
way to pass data to multiple destinations is to broadcast the data to all PEs and let each PE decide if it has to

86

Figure 1-6: The row stationary dataflow aims to maximize overall convolutional reuse
of all datatypes. Every processing element (PE) operates on one row of filter weights
(reused horizontally through the array) and one row of input activations (reused
diagonally through the array). Figure taken from [1].

the row stationary dataflow on a 2D array of processing elements.

Earlier on, accelerators were designed to primarily support a single dataflow. More

recently, accelerators have been designed to support multiple dataflows through flex-

ible on-chip networks and configurable switches [108–110]. This allows for an accel-

erator to toggle between dataflow patterns to better support a particular layer or

set of layers within a DNN. However, this often comes at the cost of increased chip

complexity and area needed for reconfigurability.

1.4 Thesis Contributions

This thesis explores fast and energy efficient monocular depth estimation on embedded

platforms. We particularly focus on learning-based depth estimation algorithms, and

investigate techniques to simplify them for real-time low-power inference. The work

presented in this thesis can be divided into three contributions.

Our first contribution is a compact DNN design for monocular depth estimation.

50

We develop a lightweight encoder-decoder architecture incorporating depthwise sepa-

rable convolutions throughout the network as well as additive skip connections passing

feature maps from encoding layers to decoding layers. Our fully-convolutional net-

work, FastDepth, is easy to train and achieves close to state-of-the-art accuracy rates

on the NYU Depth v2 dataset. It does so while being a fraction of the size of models

presented in prior works. This work is discussed in Chapter 2 and appears in [111].

Our second contribution extends the first one to focus on deployment, targeting

real-time inference on NVIDIA’s Jetson TX2 embedded platform. We demonstrate

that to achieve this, further steps in model reduction are necessary. Our methodology

for deployment includes hardware-specific compilation of network layers for the CPU

and GPU onboard the TX2, as well as channel pruning to reduce model size with

negligible accuracy loss. We show that with these steps, FastDepth can achieve

real-time inference at 178 fps on the TX2 GPU and at 27 fps when running only

on the CPU, with power consumption of 10−12 W in both scenarios. This puts

FastDepth as being over an order of magnitude faster than prior works yet with

comparable accuracy. This work is discussed in Chapter 3 and appears in [111].

Trained models and evaluation code are available at http://fastdepth.mit.edu/

and https://github.com/dwofk/fast-depth.

Our third contribution explores custom hardware design to further push the energy

efficiency of FastDepth by aiming to lower power consumption at inference time.

We employ a hardware-algorithm co-design approach in which we design an FPGA-

based accelerator in conjunction with modifying the FastDepth topology to make

it more accelerator-friendly. Our design choices when developing our dataflow and

accelerator architecture inform the modifications we make to the FastDepth DNN,

and those modifications then motivate additional accelerator features. This co-design

approach results in a 21% reduction in data movement of feature maps and parameters

and enables high spatial utilization of our accelerator. Our accelerator natively runs

depthwise separable layers using a reconfigurable compute engine that supports a

heterogeneous dataflow for depthwise and pointwise convolutions. We deploy the

accelerator on the Ultra96 SoC and demonstrate end-to-end inference. Processing

51

http://fastdepth.mit.edu/
https://github.com/dwofk/fast-depth

time of all layers on the FPGA takes 29 ms with power consumption of around

6 W, pointing to higher energy efficiency than what the original FastDepth network

achieved on the TX2 CPU. This work is discussed in Chapter 4.

52

Chapter 2

FastDepth, a Compact DNN for

Monocular Depth Estimation

This chapter introduces our first contribution: a compact deep neural network de-

sign for monocular depth estimation.1 This work is motivated by a rising interest in

deploying DNNs and performing inference on edge devices, e.g., on mobile systems,

embedded platforms, etc. A more specific example in a robotics context is that of

miniaturized robotic vehicles that can traverse narrow spaces and be used in applica-

tions such as disaster relief, exploration, and environmental monitoring. Such systems

are not only limited in onboard compute resources but are also subject to latency and

power constraints. While state-of-the-art learning-based depth estimation algorithms

achieve significant improvement in accuracy, they do so at the cost of increased com-

putational complexity and runtime, which makes them unsuitable for small robotic

systems. This highlights a key challenge in balancing the computation and runtime

cost with the accuracy of the depth estimation algorithm.

In this chapter, we describe our proposed DNN architecture for low-latency depth

estimation. We demonstrate that by taking latency into account throughout different

DNN design stages, we can achieve depth inference at an accuracy comparable to

prior works with a network that is over an order of magnitude smaller and faster.
1This work was done in collaboration with Fangchang Ma and Tien-Ju Yang, and was supervised

by Sertac Karaman and Vivienne Sze. It has been published in [111]. Material presented in this
chapter has been adapted from that publication. Project website: http://fastdepth.mit.edu/

53

http://fastdepth.mit.edu/

2.1 Related Work

Over the years, a multitude of DNNs have been designed for monocular depth es-

timation; several of these are surveyed in Section 1.1.2. Here, we narrow down our

literature review to the works most relevant to ours and the ones against which our

DNN design is evaluated. Eigen et al. [13] proposed one of the earlier monocular

depth estimation DNNs, using two stages of convolutional neural networks, with one

network predicting depth on a coarse (global) scale and the second network refining

depth within local regions. This approach relied on convolutional layers with large

kernel sizes and pooling to extract features over large regions of the input image as

well as fully-connected layers to extend the field of view to the entire input image.

The coarse depth generated by the first stage network was fed into the second stage

network as an additional feature map. Eigen et al. improved on this multi-scale

convolutional approach in [14] by deepening the network, introducing a third stage to

increase output resolution, and allowing multi-channel feature maps to pass between

scales instead of a single-channel coarse depth map. The authors explored two op-

tions for their first stage network: AlexNet [49] and the much-deeper VGG [46], with

VGG contributing to a higher accuracy as well as a larger model size. Figure 2-1(a)

illustrates their multi-stage network predicting outputs at multiple scales.

More recent depth estimation DNNs have adopted an encoder-decoder struc-

ture [2, 112], shown in Figure 2-1(b). In such architectures, the encoder is responsible

for extracting low resolution features from the input, while the decoder upsamples

these features and gradually merges them via high-dimensional convolutions into a

high-resolution output. The encoder output directly feeds into the decoder, and the

two may be interconnected via skip connections between encoding and decoding lay-

ers [32, 113, 114]. It is possible for the encoder and decoder to be balanced in terms

of complexity, or for one of the two to dominate a model’s size or runtime.

Laina et al. [2] developed an encoder-decoder depth estimation DNN based on

ResNet-50 [16] that achieved higher accuracy than [13, 14]. ResNet-50 served as their

encoder, and the fully-connected layer at the end of the ResNet was replaced with

54

…
CONV / POOL FC

CONV with large
kernel sizes

…

CONV with large
kernel sizes

…

Dense
Depth
Map

upsample
layer 2

upsample
layer 3

upsample
layer 4

upsample
layer 1

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C) Encoding Layers Decoding Layers
extract features from input upsample low-resolution features and merge into single high-resolution output

upsample
layer 5

224×224×32

1×1
conv

CONV / POOL

CONV / POOL
CONCAT

CONCAT

higher-resolution
final output

UPSAMPLE

UPSAMPLE

Scale 1

Scale 2

Scale 3

RGB Image

refined output

coarse output

(a) Multi-stage DNN structure predicting outputs at different scales. Each stage/scale con-
sists of several convolutional layers. The initial stage extracts low resolution features and
applies a fully-connected layer to generate a coarse output. Later stages maintain resolution
and refine local details such as boundary edges. The output from a given stage is a depth
map at varying resolutions that is concatenated with RGB input and fed into the subsequent
stage. Figure adapted from [14]. This style of depth estimation DNN was used in [13, 14].

final
output

skip connections

Encoder Deco
der

Dense
Depth
Map

upsample
layer 2

upsample
layer 3

upsample
layer 4

upsample
layer 1

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C) Encoding Layers Decoding Layers
extract features from input upsample low-resolution features and merge into single high-resolution output

upsample
layer 5

224×224×32

1×1
conv

RGB Image

low resolution
features

(b) Encoder-decoder DNN structure. The encoder extracts low resolution features from
the input, while the decoder gradually upsamples and merges these features through con-
volutional layers to directly produce a high resolution output. Unlike the multi-stage DNN
structure above, the intermediate feature map between the encoder and decoder is not a
coarse depth map. However, like the structure above, this one also incorporates multi-
scaleness in the form of skip connections, which pass feature maps of varying resolutions
from the encoder to the decoder to help refine details in the depth output. This style of
depth estimation DNN was used in [2, 112] and is used in our FastDepth work.

Figure 2-1: Examples of two depth estimation DNN structures.

55

a decoder consisting of cascaded upsampling blocks. The authors defined two types

of up-sampling blocks: UpProj and UpConv, with UpProj containing three times as

many convolutions but yielding a higher accuracy (see Section 2.5.2 for a discussion

of decoder upsampling blocks). Xian et al. [112] also used ResNet-50 as an encoder

and incorporated skip connections from the ResNet to their decoder, where feature

maps passed along the connections were upsampled and fused.

One trend that can be noticed in these works is using complex encoders (e.g.,

based on VGG, ResNet) as well as complex decoders (e.g., comprised of blocks with

several convolutional layers each) to improve accuracy at the expense of runtime.

How both of these can be simplified for lower latency and higher efficiency is still

an active research question. Prior research on designing fast and efficient networks

has primarily focused on encoder networks for tasks such as image classification and

object detection [1]. In these applications, the input is an image (pixel-based), and

the output is reduced to a label (an object class and position). To the best of our

knowledge, less effort has been put into the efficient design of both encoder and decoder

networks (i.e., auto-encoder networks) for tasks such as depth estimation, where the

output is a dense image of similar resolution as the input. In particular, reducing

decoder complexity poses a challenge since there is less information reduction at each

of the decoding layers and the decoder’s output is high dimensional.

2.2 FastDepth DNN Architecture

Our compact and fast monocular depth estimation DNN — FastDepth — has a fully

convolutional architecture with an encoder-decoder structure shown in Figure 2-2.

The encoder extracts high-level low-resolution features from the input image. These

features are then fed into the decoder, where they are gradually upsampled, refined,

and merged to form the final high-resolution output depth map. In developing a depth

estimation DNN that can run in real-time, we seek low-latency network designs for

both the encoder and the decoder.

56

Dense
Depth
Map

upsample
layer 2

upsample
layer 3

upsample
layer 4

upsample
layer 1

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C) Encoding Layers Decoding Layers
extract features from input upsample low-resolution features and merge into single high-resolution output

upsample
layer 5

224×224×32

1×1
conv

Figure 2-2: Our FastDepth network architecture. The encoder is shown in blue;
decoder is shown in yellow. Dimensions of intermediate feature maps are given as
height × width × channels. Arrows from encoding layers to decoding layers denote
additive (rather than concatenative) skip connections.

2.2.1 Encoder Network

The encoder used in depth estimation DNNs is commonly a network designed for

image classification. Commonly used encoder networks include VGG-16 [46] and

ResNet-50 [16] for their strong expressive power and high accuracy. However, such

networks are also very large. For example, VGG-16 uses 138M weights and performs

15.5G multiply-accumulate operations (MACs), while ResNet-50 uses 25.5M weights

and performs 3.9G MACs [1]. The high computational complexity of these networks

increases inference latency, thus making them unsuitable for applications running in

real-time on embedded systems.

Since our work targets low inference latency, we employ the MobileNet [45] as our

encoder of choice. MobileNet makes use of depthwise decomposition, which factorizes

an 𝑅×𝑆×𝐶×𝑀 standard convolutional layer into a depthwise layer with 𝐶 distinct

𝑅×𝑆×1 filters and a pointwise layer with 𝑀 distinct 1×1×𝐶 filters (illustrated earlier

in Figure 1-3). Since each filter in a depthwise layer only convolves with a single input

channel, the complexity of a depthwise layer is much lower than that of a standard

convolutional layer, where each filter convolves with all input channels. Moreover,

each pointwise filter is just a 1×1 kernel, so the number of MACs performed by a

pointwise layer is 𝑅×𝑆 times smaller than that of the original standard convolu-

tion. Therefore, depthwise decomposition significantly reduces the complexity of a

convolutional layer, making MobileNet much smaller overall. MobileNet uses 4.2M

parameters and just 0.569G MACs [45]; this translates to reduced inference latency.

However, MobileNet still achieves competitive accuracy rates on image classification

57

tasks (e.g., 70.6% top-1 accuracy on ImageNet [115] compared to 71.5% top-1 ac-

curacy achieved with VGG-16). Its significantly smaller size makes it more efficient

than networks with standard convolutional layers like ResNet and VGG. We therefore

use MobileNet as the encoder backbone of our depth estimation DNN.

2.2.2 Decoder Network

In an encoder-decoder network structure, the typical objective of the decoder is to

merge and upsample the output of the encoder to form a dense prediction. A key de-

sign aspect of the decoder is the upsample operation used, e.g., unpooling, transpose

convolution, interpolation combined with convolution. Different upsample operations

are explored more in the decoder ablation study in Section 2.5.2. The channel reduc-

tion factor of each decoding layer, i.e., how much the channel dimension is reduced

as the spatial dimensions expand, is another design aspect. These decoder character-

istics all factor into the accuracy, computational complexity, and inference latency of

the overall neural network.

Our decoder network, which we refer to as NNConv5, consists of five cascading up-

sample layers and a single pointwise layer at the end. Each upsample layer performs

5×5 convolution and reduces the number of output channels by half relative to the

number of input channels. Convolution is then followed by nearest-neighbor interpo-

lation that doubles the spatial resolution of intermediate feature maps. Interpolating

after convolution instead of before quarters the resolution of feature maps processed

by the convolutional layers; this reduces computation in the decoding layers by 1/4

as when interpolating before convolution. We use depthwise separable convolutions

to lower the complexity of all convolutional layers, resulting in a fast decoder that

has a runtime comparable to the MobileNet encoder.

2.2.3 Skip Connections

Encoder networks tend to be deep and typically contain many layers to gradually

reduce spatial resolution, which allows the network to extract higher-level features

58

from the input. The output of the encoder into the decoder becomes a set of low

resolution features in which many image details can be lost, making it more difficult

for the decoder to recover pixel-wise (dense) data. Skip connections that carry residual

feature maps from encoding layers to decoding layers allow image details from high

resolution feature maps in the encoder to be merged into features within the decoder.

This helps the decoding layers to reconstruct a more detailed dense output, e.g.,

with sharper edges. Skip connections have been previously been used in networks for

image segmentation such as U-Net [32] and DeeperLab [114], showing that they can

be beneficial in improving accuracy of networks producing dense outputs.

In the FastDepth DNN, we incorporate skip connections from the MobileNet en-

coder to the outputs of the middle three layers in the decoder, as depicted by the

arrows in Figure 2-2. Feature maps at the terminating end of the skip connections

are combined through addition rather than concatenation; this is to avoid increasing

the number of feature map channels processed by the decoding layers.

2.2.4 Layer Types Used

FastDepth is a fully-convolutional neural network, meaning it does not contain any

fully-connected layers or pooling layers. Most of its convolutional layers use depthwise

separable convolutions. Exceptions to this include the very first layer of the MobileNet

encoder (that is a standard convolutional layer) and the very last layer of the decoder

(that is simply a pointwise convolution followed by interpolation).

Each convolutional layer in FastDepth is followed by a batch normalization layer

and a ReLU function. After training, batch normalization parameters are folded into

preceding convolutions, resulting in an neural network topology consisting solely of

convolutional layers, ReLU functions, and addition operations for skip connections.

2.3 Training Environment

We implement the FastDepth network in PyTorch [42] and train on the NYU Depth

v2 dataset [25] using the official train/test data split. Encoding layers are initialized

59

with weights from models that have been pretrained on ImageNet [115]. The network

is then trained as a whole for 20 epochs with a batch size of 16 and an initial learning

rate of 0.01. The learning rate is reduced by a factor of 2 every 5 epochs.

Data Augmentation We follow similar data augmentation steps as the training

procedure in [23]. After center-cropping RGB frames to 304×228, we additionally

resize the frames to 224×224 to match the input size to our MobileNet encoder.

Loss Function and Optimizer Our loss function is L1 (mean absolute error).

Our optimizer is SGD with a momentum of 0.9 and a weight decay of 0.0005.

Error Metrics We evaluate accuracy using two metrics: (1) RMSE, the root mean

squared error and (2) 𝛿1, the percentage of predicted pixels where the relative error

is within 25%. Lower RMSE and higher 𝛿1 values indicate better predictions.

2.4 Post-Training Evaluation and Analysis

This section presents an initial evaluation of our FastDepth network. Evaluated

metrics are summarized in Table 2.1. Our evaluation here focuses on accuracy metrics

(𝛿1 and RMSE) and complexity metrics (number of MACs). However, the MACs

count only serves as a coarse first-order estimate of complexity, as it is hardware-

agnostic and does not take into account additional complexity factors like the amount

of data movement taking place. Latency, power consumption, and energy efficiency

are more holistic metrics. While we focus on evaluating those metrics in Chapter 3,

we include a preliminary runtime comparison in our evaluation here.

Our target hardware platform is the NVIDIA Jetson TX2 [84]. All models evalu-

ated on the TX2 are run with a batch size of 1 and at 32-bit floating point precision.

The TX2 is set to operate in the max-N power mode (see section 3.3.1 on TX2 power

consumption for more details).

60

on NYU Depth v2 Input
Size

MACs
[G]

RMSE
[m] 𝛿1

GPU
[ms]

CPU
[ms]

Eigen et al. [13] 228×304 2.06 0.907 0.611 23 307
Eigen et al. [14] (w/ AlexNet) 228×304 8.39 0.753 0.697 96 1391
Eigen et al. [14] (w/ VGG) 228×304 23.4 0.641 0.769 195 2797
Laina et al. [2] (w/ UpConv) 228×304 22.9 0.604 0.789 237 2384
Laina et al. [2] (w/ UpProj) 228×304 42.7 0.573 0.811 319 3298
Xian et al. [112] 384×384 61.8 0.660 0.781 283 4429
Ours (FastDepth) 224×224 0.74 0.599 0.775 19 5100

Table 2.1: Comparing FastDepth against prior work. For 𝛿1, higher is better. For
all others, lower is better. Statistics for cited works come from our re-implemented
models. Reported runtimes are measured in PyTorch on an NVIDIA Jetson TX2. Our
network design achieves close to state-of-the-art accuracy with a significant reduction
in MACs and GPU runtime.

Accuracy and Complexity Our FastDepth DNN achieves both 𝛿1 and RMSE

metrics that are comparable to prior works. Although our 𝛿1 accuracy is almost 4%

lower than that achieved by Laina et al. [2] with their UpProj decoder, our RMSE

(arguably a more intuitive metric) is within only 3 cm of theirs. At the same time,

FastDepth is far less computationally costly, with a reduction in MACs of 30−80×
when compared with models yielding similar or higher accuracy rates. This reduction

is made possible through our exploration of the encoder and decoder design spaces

as described by our ablation studies in Section 2.5.

Runtime on the Jetson TX2 The runtimes evaluated here are all obtained by

running models directly in PyTorch. FastDepth surpasses real-time inference speeds

on the TX2 GPU and runs faster than prior works. There are, however, observed inef-

ficiencies in speed on the TX2 CPU. This is largely due to PyTorch’s under-optimized

CPU execution of depthwise separable layers that are used heavily throughout Fast-

Depth.2 During inference on the GPU, we enable cuDNN (a library of CUDA-

compatible GPU-accelerated operation primitives) in PyTorch; this is successfully

2Depthwise separable layers offer a reduction in MACs over standard convolutional layers. How-
ever, MACs are not always representative of real-world performance, e.g., latency. What we observe
here is an example of that — a reduction in MACs achieved by using depthwise separable layers is
not translating to lower runtime on the TX2 CPU. This highlights the importance of using direct
metrics such as latency measurements to gauge the impact of DNN design choices.

61

Encoder Weights
[M]

MACs
[G]

RMSE
[meters] 𝛿1

CPU
[ms]

GPU
[ms]

ResNet-50 25.6 4.19 0.568 0.800 610 35.0
ResNet-18 11.7 1.84 0.568 0.782 220 15.2
MobileNet 3.19 0.57 0.579 0.772 3700 8.7

Table 2.2: Comparison of encoder variants in our ablation study. RMSE and 𝛿1 are
for encoder-decoder networks with the decoder fixed as NNConv5. All other metrics
are for the encoder in isolation. Runtimes are measured in PyTorch on a TX2. We
select MobileNet as the best encoder option.

accelerating FastDepth layers. However, during inference on the CPU, no CPU-

equivalent to cuDNN is enabled. To remedy the observed inefficiencies, we need to

perform hardware-specific compilation; this is discussed further in Chapter 3.

2.5 Ablation Studies

This section presents ablation studies for the major components that make up the

FastDepth network design. We discuss the encoder and decoder design spaces and

how our design choices impact the latency of our depth estimation network.

2.5.1 Encoder Design Space

A common encoder used in existing high-accuracy DNNs [2, 112] is ResNet-50 [16].

Targeting lower encoder latency, we consider the smaller ResNet-18 and Mobile-

Net [45] as alternatives to ResNet-50. The last average pooling layer and fully con-

nected layers are removed from the MobileNet and ResNet architectures, since the

output from the last convolutional layer in those networks will feed into the decoder.

Furthermore, to make the encoders compatible with a fixed decoder structure, we

append a 1×1 convolutional layer to the end of both ResNet encoders, so that the

output from all encoder variants has a consistent shape of 7×7 with 1024 channels.

We compare all three encoder options against each other in Table 2.2. We pair

each encoder with a fixed NNConv5 decoder and train that network as a whole. The

reported runtimes are obtained by running the networks in PyTorch. Runtimes for

62

ResNet-50 and ResNet-18 are too high, even on the TX2 GPU, to achieve real-time

speeds above 25 fps if these encoders are paired with decoders of similar latency. In

comparison, MobileNet efficiently trades off between accuracy and latency, and has a

noticeably lower GPU runtime. We therefore select MobileNet as our encoder.

We note that despite its lower complexity, MobileNet is an order of magnitude

slower on the TX2 CPU than ResNet-18. This can be attributed to as-of-yet unopti-

mized low-level CPU execution of depthwise layers in deep learning frameworks and

can be remedied through hardware-specific compilation [99].

2.5.2 Decoder Design Space

While encoders have been well characterized in deep learning research, decoders have

been less extensively explored, especially in the context of efficient DNN design. We

consider two decoder aspects: upsample operation and depthwise decomposition.

Upsample Operation

We survey four ways of upsampling in the decoder. Their characteristics are listed

below, and visual representations are shown in Figure 2-3:

1. UpProj is explored as a decoder building block in [2]. It consists of 2×2

unpooling (zero-insertion) followed by a two-branched residual structure that

computes a total of three convolutions (two 5×5 and one 3×3).

2. UpConv is also explored in [2]. It consists of 2×2 unpooling (zero-insertion)

followed by a single 5×5 convolution.

3. DeConv5 refers to transpose convolution using a 5×5 kernel.3

4. NNConv5 refers to 5×5 convolution followed by nearest-neighbor interpola-

tion4 with a scale factor of 2.

3Sometimes also called deconvolution. We use a kernel size of 5 to fairly compare against UpConv.
4An alternate option would be using bilinear interpolation. However, we select nearest-neighbor

interpolation as is it a simpler operation with more consistent implementations across different deep
learning frameworks and compilers.

63

Figure 2-3: Visual representations of different upsample operations we consider for
decoders: (a) UpProj [2], (b) UpConv [2], (c) DeConv5, (d) NNConv5.

Decoder Weights
[M]

MACs
[G]

RMSE
[meters] 𝛿1

CPU
[ms]

GPU
[ms]

(a) UpProj [2] 38.1 28.0 0.599 0.774 3300 325
(b) UpConv [2] 17.5 12.9 0.591 0.771 1600 238
(c) DeConv5 17.5 12.9 0.596 0.766 290 31.0
(d) NNConv5 17.5 3.21 0.579 0.772 410 26.2

Table 2.3: Comparison of decoder variants in our ablation study. RMSE and 𝛿1 are
for encoder-decoder networks with a MobileNet encoder. All other metrics are for
the decoder in isolation. Runtimes are measured in PyTorch on a TX2. We select
NNConv5 as the best decoder option.

We implement four decoder variants using these upsample operations, keeping

the structure fixed at 5 decoding layers with 1×1 convolution at the end. Table 2.3

compares the four decoders. UpProj is most complex, due to its larger number of

convolutions per upsample layer. It achieves the highest 𝛿1 accuracy but is the slowest.

UpConv is less complex and faster than UpProj, but its CPU and GPU runtimes are

still too slow for real-time processing. DeConv5 has an identical number of weights

and MACs as UpConv and is noticeably faster on both the CPU and GPU. However,

it can be prone to introducing checkerboard artifacts in its outputs [116], which helps

explain its lower accuracy. NNConv5 achieves higher 𝛿1 accuracy and lower RMSE

than both UpConv and DeConv5, with a slightly lower GPU runtime. We therefore

select NNConv5 as our decoder.

64

MobileNet-NNConv5 Weights
[M]

MACs
[G]

RMSE
[meters] 𝛿1

CPU
[ms]

GPU
[ms]

with standard decoder 20.6 3.78 0.579 0.772 4100 34.9
with depthwise decomposition 3.93 0.74 0.584 0.767 5200 18.6

with depthwise decomposition
& concatenative skip connections 3.99 0.85 0.601 0.776 5500 26.8

with depthwise decomposition
& additive skip connections 3.93 0.74 0.599 0.775 5100 19.1

Table 2.4: Impact of depthwise decomposition and skip connections in the decoder
on network complexity and TX2 runtime.

Depthwise Separable Convolution

After selecting MobileNet as our encoder and NNConv5 as our decoder, we observe

that the runtime of our network is dominated by the decoder. From Table 2.2 and

Table 2.3, we see that a MobileNet encoder takes 8.7 ms to run on the TX2 GPU, while

the NNConv5 decoder takes 26.2 ms — 3 times as long as the encoder. This motivates

us to simplify our decoder even further. Similar to how depthwise decomposition

lowers the complexity and latency in MobileNet, we now replace all convolutions

within the decoder with depthwise separable convolutions.

Table 2.4 shows that depthwise decomposition in the decoder lowers inference

runtime on the GPU by almost half. It also reduces the runtime contribution of

the decoder to the entire model runtime. In our encoder ablation study, we report

that the MobileNet encoder runs in 8.7 ms on the GPU. Here, this implies that a

standard NNConv5 decoder accounts for 75% of entire model runtime. However,

with depthwise decomposition, the decoder accounts for just 53% of entire model

runtime. This shows that incorporating depthwise decomposition is instrumental in

helping lowering the decoder runtime to better balance with the encoder runtime.

In contrast to the runtime reduction on the GPU, runtime on the CPU increases,

despite the reduced number of MACs; as mentioned earlier, this is due to the ineffi-

cient CPU execution of depthwise separable layers in PyTorch. Like with MobileNet,

depthwise decomposition in the decoder results in a slight accuracy loss, due to the

reduction in trainable parameters and computation.

65

(a) (b) (c) (d)

Figure 2-4: Visualized results of depth estimation on the NYU Depth v2 dataset after
training. (a) input RGB image; (b) ground truth; (c) our model, FastDepth, without
skip connections; (d) our model, FastDepth, with skip connections.

66

2.5.3 Skip Connections

We consider both additive and concatenative skip connections. Concatenative skip

connections increase the computational complexity of the decoder since decoding

layers need to process feature maps with more channels. Table 2.4 shows that this

improves the 𝛿1 accuracy but also noticeably increases CPU and GPU runtimes. In

contrast, using additive skip connections leaves the number of channels in the decoder

unchanged and has a negligible impact on inference runtime while achieving almost

the same accuracy boost. We therefore use additive skip connections in our final

network design. As shown in Figure 2-4(d), skip connections noticeably improve the

sharpness and visual clarity of the depth maps output by our network design.

2.6 Summary

This chapter introduces our first contribution, a compact deep neural network for

monocular depth estimation. Our FastDepth DNN uses a lightweight encoder-decoder

architecture that achieves depth inference accuracy on par with prior work at only a

fraction of the model size and runtime. As explained in our ablation studies, Fast-

Depth uses a low-complexity and low-latency decoder that does not dominate compu-

tation or runtime even when combined with a small MobileNet encoder. This balanced

network design contrasts with prior work [2] featuring a deep network with a complex

decoder that dominates computation and runtime. Key design choices that allow us

to achieve low decoder latency include performing fewer convolutions per upsampling

operation as well as incorporating depthwise separable convolutions. Additive skip

connections from the encoder to the decoder help boost network accuracy without

increasing decoder computation or runtime.

The results and analysis in this chapter have focused on evaluating FastDepth on

basis of its computational cost (MACs) and accuracy. We additionally offer prelimi-

nary inference runtime estimates on an NVIDIA Jetson TX2. Though our FastDepth

DNN achieves over 50 fps on the TX2 GPU — easily surpassing real-time inference,

its performance on the CPU is observed to be orders of magnitude slower than an

67

acceptable real-time range of 25−30 fps. This is due to execution inefficiencies on spe-

cific hardware (in this case, an ARM CPU) rather than the DNN architecture itself,

which motivates additional DNN deployment steps that will be described next.

68

Chapter 3

Real-Time Depth Inference on an

Embedded CPU/GPU

This chapter extends our work on FastDepth described in the previous chapter, now

with a focus on deployment and attaining real-time inference speeds on an embedded

GPU as well as CPU.1 Two challenges in achieving fast inference speeds with our neu-

ral network have been simplifying the network sufficiently enough without sacrificing

accuracy as well as ensuring that those simplifications translate to reduced runtime.

In this chapter, we discuss the steps we take in addressing these challenges and re-

ducing FastDepth inference latency: (1) hardware-specific compilation to optimize

FastDepth layers for our target platform, and (2) network simplification (pruning)

to reduce overall network computation without degrading accuracy. We analyse the

impact of these steps and present an updated evaluation against prior works.

3.1 Hardware-Specific DNN Compilation

Our proposed network architecture is fully convolutional and makes use of depthwise

decomposition in both the encoder and the decoder. In commonly-used deep learning

1This work was done in collaboration with Fangchang Ma and Tien-Ju Yang, and was supervised
by Sertac Karaman and Vivienne Sze. It has been published in [111]. Material presented in this
chapter has been adapted from that publication. Project website: http://fastdepth.mit.edu/
Trained models and evaluation code available at: https://github.com/dwofk/fast-depth

69

http://fastdepth.mit.edu/
https://github.com/dwofk/fast-depth

frameworks, depthwise separable layers have not yet been fully optimized for fast run-

time on edge devices, e.g., on embedded ARM CPUs [98, 99]. As a result, although

depthwise decomposition significantly reduces the number of MACs in a network,

a similar reduction may not be observed in inference latency. The left portion of

Table 3.1 highlights exactly this: the TX2 CPU runtime of MobileNet-NNConv5 in

PyTorch is high, due to the prevalence of depthwise layers in MobileNet, and it in-

creases when we incorporates depthwise layers in the decoder. To address the observed

runtime inefficiencies of depthwise layers, we use the TVM compiler stack [98]. TVM

performs hardware-specific scheduling and operator tuning that allows the impact of

reduced operations to be translated into reduced processing time.

MobileNet-NNConv5
in PyTorch using TVM

CPU [ms] GPU [ms] CPU [ms] GPU [ms]
with standard decoder 4100 34.9 176 20.9
with depthwise decomposition 5200 18.6 50 8.3
with depthwise decomposition
& additive skip connections 5100 19.1 66 8.2

Table 3.1: Hardware-specific compilation enables inference speedup on both the CPU
and GPU when incorporating depthwise separable layers in our network. Additive
skip connections do not add noticeable runtime overhead after compilation, as is
expected. All runtimes are measured on the Jetson TX2.

During compilation of FastDepth with TVM, every layer in the network is indi-

vidually tuned for optimal performance on the specified target platform — in our

case, the TX2 GPU or CPU. Tuning a layer involves searching and optimizing within

a configuration space defining the execution of the operations within that layer; such

configurations include tiling factors, vectorization, unrolling, etc. Layer tuning also

involves additional optimization steps such as operator fusion to reduce memory ac-

cesses between operations, constant folding to avoid static computations that can be

precomputed, and memory latency hiding. The length of the tuning process impacts

how well a layer is tuned, i.e., tuning for longer allows for a larger search and optimiza-

tion space, potentially resulting in a better optimization. We find that for FastDepth

layers, 1000 trials are enough for optimizations to converge. The result of the tuning

70

process is a log with tuned settings for the different operators (e.g., multiplications,

additions, interpolations) present in each layer. This log is then queried at inference

time, resulting in faster layer execution. Both standard and depthwise convolutional

layers benefit from being tuned. The right portion of Table 3.1 reports TX2 runtimes

after compilation with TVM. Depthwise decomposition in the decoder now reduces

GPU runtime by 2.5× and CPU runtime by 3.5×.

3.2 DNN Simplification through Pruning

To reduce network latency even further, we perform post-training network pruning

using NetAdapt [4]. Starting from a trained network, NetAdapt automatically and

iteratively identifies and removes redundant channels from feature maps to reduce

parameters and computation within layers. In each iteration, NetAdapt generates a

set of network proposals simplified from a reference network. Each network proposal

is retrained for a short period of time (i.e., short-term fine tuning), and the network

proposal with the best accuracy-complexity trade-off is then chosen as the reference

network for the next iteration. This process continues until the target accuracy or

complexity is achieved. Network complexity can be gauged by indirect metrics (e.g.,

number of MACs) or direct metrics (e.g., latency on a target hardware platform).

When applying NetAdapt to FastDepth, we use the number of MACs as the guid-

ing complexity metric. Our pruning process begins with an initial reduction of 0.01G

MACs and decays at a rate of 0.98 with each pruning iteration. When perform-

ing short-term fine tuning, we use a learning rate of 0.001. Figure 3-1 shows our

FastDepth architecture shape after pruning. The colored bars illustrate the effect of

channel pruning. Compared to the original FastDepth shape shown in the background

in grey, channels in the middle of the network (i.e., the second half of the MobileNet

encoder, and the encoder-decoder boundary) are pruned away the most. Two bottle-

neck regions, where layer parameters and MACs are fewer than in neighboring layers,

appear in the pruned network: one in the encoder (around layer mobilenet.9) and

one in the decoder (around layer decoder.2).

71

Figure 3-1: Number of input channels to each layer in our network architecture after
pruning. The shaded part represents the architecture before pruning. The very first
layer to the network (mobilenet.0) is not shown since the channel size of the input
fed into the network remains fixed at 3 channels (RGB).

Prior to pruning, our compiled FastDepth network already surpasses real-time

throughput on the TX2 GPU but does not yet achieve real-time throughput on the

TX2 CPU. Pruning with NetAdapt lowers the FastDepth model runtime and increases

CPU framerate to between 25 and 30 fps, which is far more suitable for real-time

inference. As shown in Table 3.2, pruning achieves a 2× reduction in MACs, a 1.5×
reduction in GPU runtime, and a 1.8× reduction in GPU runtime, with almost the

same accuracy. Figure 3-2(e) shows that the pruning process preserves the sharpness

and visual clarity of output depth maps.

3.3 Post-Compilation Evaluation on the Jetson TX2

This section presents an updated evaluation of our FastDepth network after compi-

lation and pruning. Updated metrics are summarized in Table 3.3.

Accuracy The steps we take in optimizing FastDepth for deployment on the TX2

have negligible effect on model accuracy. Network pruning does result in a slight

accuracy loss that is mostly restored in retraining; the pruned FastDepth model

72

Before Pruning After Pruning Reduction
Weights 3.93M 1.34M 2.9×
MACs 0.74G 0.37G 2.0×
RMSE 0.599 0.604 -
𝛿1 0.775 0.771 -

CPU [ms] 66 37 1.8×
GPU [ms] 8.2 5.6 1.5×

Table 3.2: Impact of pruning on our encoder-decoder network. Pruning together with
compilation enable real-time inference throughput on the CPU at 27 fps and further
increase throughput on the GPU to 178 fps. Reported runtimes are measured after
compilation for the Jetson TX2.

(a) (b) (c) (d) (e) (f)

Figure 3-2: Visualized results of depth estimation on the NYU Depth v2 dataset,
now including results from FastDepth after compilation and pruning. (a) input RGB
image; (b) ground truth; (c) our model, without skip connections, unpruned; (d)
our model, with skip connections, unpruned; (e) our model, with skip connections,
pruned; (f) error map between the output of our final pruned model and ground truth,
where redder regions indicate higher error.

73

on NYU Depth v2 Input
Size

MACs
[G]

RMSE
[m] 𝛿1

GPU
[ms]

CPU
[ms]

Eigen et al. [13] 228×304 2.06 0.907 0.611 23 307
Eigen et al. [14] (w/ AlexNet) 228×304 8.39 0.753 0.697 96 1391
Eigen et al. [14] (w/ VGG) 228×304 23.4 0.641 0.769 195 2797
Laina et al. [2] (w/ UpConv) 228×304 22.9 0.604 0.789 237 2384
Laina et al. [2] (w/ UpProj) 228×304 42.7 0.573 0.811 319 3298
Xian et al. [112] 384×384 61.8 0.660 0.781 283 4429
Ours (FastDepth) 224×224 0.37 0.604 0.771 5.6 37

Table 3.3: Comparing our pruned and compiled FastDepth network against prior
work. For 𝛿1, higher is better. For all others, lower is better. Statistics for cited
works come from our re-implemented models. Reported runtimes are measured in
PyTorch on an NVIDIA Jetson TX2 in max-N mode. Our final network design
surpasses real-time inference speeds on both the GPU and CPU. Overall, FastDepth
achieves close to state-of-the-art accuracy while running an order of magnitude faster.

achieves 𝛿1 and RMSE metrics that are within 1% of those achieved prior to pruning.

Hardware-specific compilation yields a model that produces depth outputs identical

to those obtained prior to compilation; there is no observed accuracy loss with compi-

lation. With these two steps, our pruned and compiled FastDepth model still achieves

competitive accuracy rates when compared to prior works.

Complexity As shown earlier in Table 3.2, network pruning allows us to reduce

the number of MACs in FastDepth by half. This drives our model complexity even

lower, and when compared against prior works, our model can now be up to 1−2

orders of magnitude less complex yet with comparable accuracy.

Runtime Network pruning and compilation both significantly contribute to a re-

duction in FastDepth runtime on the TX2. The reduction is more prominent for the

CPU, owing to the high inefficiencies of depthwise separable layers originally observed

when running in PyTorch on the TX2 CPU. Our pruned and compiled model now

achieves real-time inference on both the TX2 GPU and CPU and runs over an order

of magnitude faster than prior works. Figure 3-3 shows our model on the far right of

an accuracy vs. framerate curve, indicating a better tradeoff than prior works.

74

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

0.60

0.65

0.70

0.75

0.80
Ac

cu
ra

cy
 (

1)

This Work
Eigen'14
Eigen'15 (AlexNet)
Eigen'15 (VGG)
Laina'16 (UpConv)
Laina'16 (UpProj)
Xian'18

0 5 10 15 20 25
Frames per second (on Jetson TX2 CPU)

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

 (
1)

This Work
Eigen'14
Eigen'15 (AlexNet)
Eigen'15 (VGG)
Laina'16 (UpConv)
Laina'16 (UpProj)
Xian'18

Figure 3-3: Accuracy vs. framerate plot comparing FastDepth against prior works.
Our network is to the far right of the curve, indicating a better performance tradeoff.

TX2 Mode GPU
Frequency

Denver 2 Cores in
Use (at Frequency)

ARM A57 Cores in
Use (at Frequency)

Max-N 1.30 GHz 2 (at 2.0 GHz) 4 (at 2.0 GHz)
Max-Q 0.85 GHz None 4 (at 1.2 GHz)

Max-P Core-All 1.12 GHz 2 (at 1.4 GHz) 4 (at 1.4 GHz)
Max-P ARM 1.12 GHz None 4 (at 2.0 GHz)

Max-P Denver 1.12 GHz 1 (at 2.0 GHz) 1 (at 2.0 GHz)

Table 3.4: Summary of NVIDIA Jetson TX2 power modes, taken from [6]. Max-N
mode allows for the highest performance (throughput) at the cost of higher power
consumption. Max-Q mode aims to provide the best power-throughput tradeoff.

3.3.1 TX2 Power Consumption Modes

The Jetson TX2 supports several different power configurations. The GPU and the

six CPU cores onboard the TX2 can be clocked at different frequencies depending on

which power mode the TX2 is set to operate in [6]. These modes are summarized in

Table 3.4. When evaluating FastDepth, we set the TX2 to run in max-N mode.

Figure 3-4 shows power consumption traces for FastDepth on the TX2 GPU and

CPU, recorded during a test run of 1000 inference trials. The idle power consumption

of the TX2 is observed to be around 3.8 W. When running FastDepth on the GPU,

power rises to 12.2 W. When running only on the CPU, power rises to a bit less, 10.5

W. If we consider active power consumption, i.e., subtracting away idle power from

total power, we estimate that FastDepth requires under 10 W of power.

The max-N mode used for evaluation is the highest performance mode and thus

75

0 5 10 15 20
time [s]

0

2000

4000

6000

8000

10000

12000
po

we
r [

m
W

]
power trace (NVPModel: MAXN)

module/main (130.13 J)
module/cpu (13.64 J)
module/ddr (31.91 J)
module/gpu (39.94 J)
module/soc (18.04 J)
module/wifi (0.00 J)

(a) Power consumption measured over 1000 inference trials on the TX2 GPU

0 10 20 30 40 50 60
time [s]

0

2000

4000

6000

8000

10000

po
we

r [
m

W
]

power trace (NVPModel: MAXN)
module/main (458.60 J)
module/cpu (241.55 J)
module/ddr (84.30 J)
module/gpu (8.84 J)
module/soc (49.21 J)
module/wifi (0.58 J)

(b) Power consumption measured over 1000 inference trials on the TX2 CPU

Figure 3-4: Power consumption over time when running FastDepth inference on the
Jeston TX2. Code used to generate power traces sourced from [3].

76

Platform Runtime Max Framerate Power Consumption
TX2 GPU (max-N) 5.6 ms 178 fps 12.2 W (3.4 W idle)
TX2 GPU (max-Q) 8.2 ms 120 fps 6.5 W (1.9 W idle)
TX2 CPU (max-N) 37 ms 27 fps 10.5 W (3.4 W idle)
TX2 CPU (max-Q) 64 ms 15 fps 3.8 W (1.9 W idle)

Table 3.5: Inference runtime and peak power consumption when deploying FastDepth
on the Jetson TX2 in high performance (max-N) and high efficiency (max-Q) modes.
Active power consumption can be estimated by subtracting the idle power consump-
tion from the reported total power consumption. In both power modes, FastDepth
consumes less than 10 W of active power.

likely to consume the most power of the various TX2 power modes. As an alternative,

we also consider the max-Q mode, which tries to balance throughput and power. It

clocks the GPU at a slower clock frequency and disables 2 of the 6 available CPU

cores. Table 3.5 compares FastDepth performance across these two power modes. As

expected, running in max-Q mode consumes less power, roughly half of that consumed

when running in max-N mode. However, inference speed is also lowered; while GPU

framerates still exceed real-time at 120 fps, CPU framerates drop to 15 fps.

3.4 Live Depth Inference on an Apple iPhone

In addition to deploying FastDepth on the Jetson TX2, we develop a live demon-

stration on a mobile phone. In recent years, mobile phone systems have been devel-

oped with capabilities to run deep learning models locally. Examples of on-device

hardware dedicated to neural network processing include Qualcomm’s AI Engine on

Snapdragon [88] and Apple’s Neural Engine on iPhones [87]. We deploy FastDepth

on two iPhone devices: an older iPhone 6S and a newer iPhone X.

We use CoreML, the machine learning framework used across Apple products, to

run FastDepth on the iPhones. Since our DNN is defined and trained in PyTorch,

we need to first convert it into a CoreML model; we do so using the ONNX open

source format for interoperability across frameworks. The FastDepth CoreML model

amounts to 5.5 MB, and we we then integrate it into an iOS application that can

be downloaded and run on the iPhone. The application connects to the iPhone’s

77

camera that captures live 1080p color video; each frame is center-cropped and resized

to produce a stream of 224×224 RGB images. The images are then sequentially run

through the FastDepth model stored within the app. Output depth is visualized on-

screen in grayscale, as shown in Figure 3-5. Depth could also be visualized using a

color gradient by integrating OpenCV functions into the app; however, we found that

the functions incurs significant runtime overhead.

Figure 3-5: Our FastDepth CoreML model running live at 40 fps on iPhone X.
Demo video available at http://fastdepth.mit.edu/.

Table 3.6 compares the hardware in our two iPhone devices as well as the per-

formance of FastDepth on those devices. We achieve real-time inference at or above

25 fps on both devices. The iPhone X sees an inference speedup of 1.6× relative

78

http://fastdepth.mit.edu/

to the iPhone 6S. It is reasonable to assume that both devices are operating under

5W, though power consumption estimates or proxies, e.g., the thermal design point

(TDP), are not easily ascertained for iPhone devices.2

Device Hardware Description FastDepth Runtime

iPhone 6S
(A9 SoC)

16−14 nm process
1.85 GHz dual-core CPU
custom 650 MHz PowerVR GPU
2GB LPDDR RAM

∼0.040 s per image
(up to 25 fps)

iPhone X
(A11 Bionic SoC)

10 nm FinFET process
2.39 GHz hexa-core CPU
Apple 3-core GPU and Neural Engine
3GB LPDDR4X RAM

∼0.025 s per image
(up to 40 fps)

Table 3.6: Inference runtime of our FastDepth CoreML model on Apple iPhone.

3.5 Summary

This chapter discusses our second contribution, mainly concerning the deployment

of FastDepth for real-time inference on the Jetson TX2. In order to address the

runtime inefficiencies of running FastDepth directly in PyTorch onboard the TX2, we

apply two state-of-the-art techniques to realize inference speedup. One focuses on

hardware-specific compilation to ensure that reductions in MACs, e.g., in depthwise

separable layers, translate to reduced runtime on hardware [98]. The other performs

iterative channel pruning within network layers to reduce model size at minimum

accuracy loss. With these two deployment steps, FastDepth successfully achieves a

real-time throughput of 178 fps on the TX2 GPU and 27 fps on the TX2 CPU, with

depth accuracy still on par with prior works.

To summarize this second contribution alongside our first one discussed in Chapter

2, we illustrate the GPU runtime progression across our design steps along with an

encoder-decoder breakdown in Figure 3-6. We treat ResNet-50 with UpProj [2] as

2Online sources have not been definitive or explicit. Perhaps a more reliable option would be to
use the Instruments app in the Xcode iOS development environment to profile energy consumption
of the FastDepth demo application.

79

a baseline network, since that work has been well-cited and achieves the highest

accuracy out of the works we evaluate against. However, we slightly modify and

retrain this baseline network with a 224×224 (instead of 228×304) input and five

(instead of four) upsample layers in the decoder. This is done for the baseline to

better match our FastDepth DNN topology and allow for a more fair comparison.

Consequently, the accuracy and runtime reported in this figure differ from those

reported in our evaluation tables.

ResNet-50
UpProj

1 = 0.771

MobileNet
NNConv5

1 = 0.772

MobileNet
NNConv5

(depthwise)

1 = 0.767

With Skip,
Compiled
for TX2

1 = 0.775

After Pruning,
Compiled
for TX2

1 = 0.771

0

100

200

300

400

Ru
nt

im
e

on
TX

2
GP

U
[m

s]

361.8

34.9 19.0 8.2 5.6

Encoder
Decoder

Figure 3-6: Reduction in inference runtime on the TX2 achieved with different steps
our approach. Stacked bars represent encoder-decoder breakdown; total runtimes are
listed above the bars. The row of 𝛿1 accuracies listed at the bottom shows the impact
of individual steps in our approach on accuracy. Relative to ResNet-50 with UpProj,
our final model achieves 65× speedup while maintaining accuracy.

One immediate observation that can be made is the imblanace in encoder vs.

decoder runtime; the decoder dominates runtime in the baseline network. It also

dominates in our own initial MobileNet-NNConv5 network. It is only after we in-

corporate depthwise decomposition in the decoding layers that the decoder runtime

begins to match that of the encoder. Furthermore, the two deployment steps we

peform — compilation and pruning — yield a 2.3× and 1.5× reduction in runtime,

respectively. In our final FastDepth model, after compilation and pruning, the en-

coder has runs in 3.4 ms, while the decoder runs in 2.2 ms. This emphasizes that our

80

decoder latency has been lowered even further, making the MobileNet encoder now

the dominant component. FastDepth ultimately runs 65× faster than the baseline,

with similar accuracy. This concludes our successful design and deployment of a fast

monocular depth estimation DNN on an embedded GPU and CPU.

81

82

Chapter 4

Energy-Efficient Acceleration on an

Embedded FPGA

This chapter presents our third contribution, a custom hardware design that aims to

improve the energy efficiency of FastDepth. Our motivation for designing hardware

dedicated to running FastDepth is twofold:

While we successfully achieved real-time inference on an embedded CPU/GPU

platform as described in the previous chapter, these CPU/GPU systems tend to

consume roughly on the order 10 W. The Jetson TX2, for instance, can consume

5−20 W. It can be fairly difficult to lower power consumption on these systems

without also negatively impacting performance. As a case in point, we observed that

setting the TX2 CPU to run in a more energy-efficient power mode reduced FastDepth

inference speeds by half. Furthermore, several applications may call for more stringent

power consumption constraints. This is where custom-designed hardware comes into

play; one of its key strengths is that it can be designed from the ground up and

tailored for whatever task it is to run. This makes a custom hardware design likely to

be smaller, with lower power consumption, than a general-purpose processor — while

also allowing for more opportunities through which to accelerate the task for higher

performance. This chapter will discuss the design opportunities we take advantage of

to accelerate FastDepth inference on a low-power embedded FPGA.

When designing hardware for a task, we also have the flexibility to adapt the task

83

to better utilize the hardware. The ability to revisit the algorithm we are trying to

run on hardware while the hardware is still being developed is advantageous in that it

increases the degrees of freedom in the design process. Algorithm-hardware co-design

allows for joint optimizations in both the algorithm and the hardware to achieve what

would not have been possible with optimizations in just one or the other. We employ

this strategy in our own effort to accelerate FastDepth.

4.1 Algorithm-Hardware Co-Design Strategy

The FastDepth neural network described in Chapter 2 is fully convolutional; there are

no pooling or fully connected layers. Furthermore, most layers, except the first and

last, are depthwise separable layers (previously defined in Section 1.2.1). The network

follows an encoder-decoder structure: encoding layers use kernel sizes of three, while

decoding layers use kernel sizes of five. The neural network also incorporates additive

skip connections between the encoder and the decoder; these are integral for improved

clarity of predicted depth along high-resolution components, e.g., boundary edges.

Widespread usage of depthwise separable convolution throughout the network

motivates us to first design an accelerator for these depthwise separable layers. We

then envision how various layers in FastDepth would run on the proposed accelerator

and reassess aspects of the network that are not natively supported by the accelerator

design. This allows us to discover modifications we can make to the original FastDepth

network that not only preserve accuracy but also result in an accelerator-friendly

network. Upon modifying the DNN and retraining it, all layers of the accelerator-

friendly network can natively run on the accelerator — resulting in successful end-to-

end inference when deployed on an embedded CPU-FPGA system.

4.1.1 Design Considerations

Design considerations relevant to designing specialized hardware for FastDepth can

be grouped into three levels: processing element design, dataflow design, and memory

hierarchy design. Design decisions made at one level affect those made at others.

84

A processing element (PE) refers to the lowest-level building block of many

neural network accelerator designs, including ours. A PE is often designed to perform

a particular computation, e.g., a multiply-and-accumulate (MAC) operation. PEs can

be instantiated many times to form a PE array of some size; in this manner, they

can be used to significantly increase compute parallelism. PEs typically contain one

or more arithmetic unit(s) along with a small amount of fixed storage, e.g., a register

file, to store data on which it is performing a computation.

A dataflow refers to the manner in which data flows to, through, and from

processing elements. Dataflow design determines how processing elements are arrayed,

how data flows in between them, and how data may held stationary within them. If

there are opportunities to re-use data amongst or within processing elements, a good

dataflow design will aim to do so, to improve processing speed and energy-efficiency.

Together, the processing elements and the dataflow constitute the compute core

of the accelerator. A memory hierarchy is designed around the compute core and

involves different levels of memory, each with different storage sizes and different

access latencies. On an FPGA, for example, a multi-level memory hierarchy could

consist of small on-chip buffers implemented with block RAM and larger off-chip

storage in DRAM. Read and write accesses to higher memory levels (e.g., off-chip

DRAM) incur significantly higher latency and energy costs than accesses to on-chip

memory. Therefore, an appropriate memory design goal would be to store highly

re-used data in local on-chip buffers in order to reduce accesses to off-chip DRAM.

The processing element, dataflow, and memory hierarchy are meant to be designed

in conjunction with each other to exploit data reuse, increase processing speed and

throughput, and improve energy-efficiency. A critical factor to consider during the

design process is whether the compute core or the memory hierarchy could be a bottle-

neck. There are various ways by which one can speed up compute logic on an FPGA,

e.g., by clocking the compute core faster, utilizing specialized DSP blocks for arith-

metic operations, etc. However, it is more difficult to speed up memory logic, since

on-chip and off-chip RAM typically have a lower clock ceiling than arithmetic units.

Thus, it is usually the memory hierarchy design and its corresponding bandwidth lim-

85

its that are bottlenecks in an accelerator design. In our case, since the purpose of the

memory hierarchy is to enable our dataflow and interface with processing elements,

an additional design consideration is ensuring that the memory hierarchy can provide

sufficient read/write bandwidth to keep all the PEs in the compute core busy.

4.2 Dataflow Design

In designing an accelerator for FastDepth, we develop a dataflow that can support

the type of layer most prevalent throughout the network, i.e., the depthwise separable

layer. Our dataflow design seeks to minimize off-chip memory accesses for model

parameters and feature maps. As described in Section 1.2.1, depthwise separable

layers consist of two convolutions: depthwise and pointwise. These two convolutions

primarily differ in how values are accumulated, which motivates a heterogeneous

dataflow design that can offer dedicated support for both convolution types.

4.2.1 Heterogeneous Dataflow for Depthwise Separable Layers

The rise of deep learning — and hardware for deep learning — has spurred much

research on dataflow design for accelerating neural networks. Several dataflow vari-

ants have since emerged: weight-stationary [86, 107], output-stationary [91], input-

stationary [96], and row-stationary [106]. As discussed in Section 1.3.4, these dataflow

variants keep different datatypes stationary within processing elements to enable data

reuse. Since data movement often constitutes a considerable, if not dominant, energy

and latency cost, a good dataflow choice will aim to exploit data reuse and reduce

movement across the memory hierarchy, especially accesses to off-chip memory.

We use the row-stationary dataflow for depthwise convolution and an output-

stationary dataflow for pointwise convolution. This heterogeneous dataflow design

maximizes convolutional reuse and minimizes partial sum movement.

86

Row-Stationary Dataflow for Depthwise Convolution

Depthwise convolution involves a kernel size typically greater than 1, which implies

spatial accumulation. However, depthwise convolution takes place on a per-channel

basis, meaning that the number of output channels equals the number of input chan-

nels, and the values of each output channel depend only on the inputs from a single

input channel. There is no channel-wise accumulation, as illustrated in Figure 1-4(a).

This suggests that the main opportunity for data reuse is in spatial accumulation

and convolutional reuse. The row-stationary dataflow [106] has been shown to suc-

cessfully exploit convolutional reuse and optimize for best overall energy-efficiency.

Hence, we adopt the row-stationary dataflow for depthwise convolution.

Output-Stationary Dataflow for Pointwise Convolution

Pointwise convolution involves a kernel size equal to 1, meaning that there is no

spatial accumulation. For a pointwise convolution with 𝐶 input channels and 𝑀

output channels, there are 𝐶 1×1 filters that effectively scale each of the 𝐶 input

channels. Afterwards, these channels are all added element-wise to produce a single

output channel. This is repeated for 𝑀 output channels, with each output channel

having its own set of 𝐶 filters. In this manner, pointwise convolution performs scaled

channel-wise accumulation, as illustrated in Figure 1-4(b).

Since there is no spatial accumulation as part of pointwise convolution, the row-

stationary dataflow is less suited for this type of convolution. Instead, our dataflow

choices are again informed by the types of data that are reused heavily throughout

the convolution. There is a total of 𝐶×𝑀 weights for each pointwise convolution;

these are known and fixed at inference-time and are reused as the input feature map

is iterated through. Thus, a weight-stationary dataflow that holds weights within the

processing elements to be reused during the corresponding pointwise convolution(s)

is one potential dataflow choice. Alternatively, another data type that is reused often

is the set of partial sums when accumulating across channels. Since a processing

element would still be operating on a row of a feature map at a time, it would need to

87

PE
on-chip
memory

buffer

off-chip
memory
(DRAM)

input feature map

filter weight
updated

partial sum

stored partial sum

PE
on-chip
memory

buffer

off-chip
memory
(DRAM)

input feature map

filter weight

PE storage completed
partial sum

(a) writing out and reading in partial sums

PE
on-chip
memory

buffer

off-chip
memory
(DRAM)

input feature map

filter weight
updated

partial sum

stored partial sum

PE
on-chip
memory

buffer

off-chip
memory
(DRAM)

input feature map

filter weight

PE storage completed
partial sum

(b) holding partial sums stationary in PE

Figure 4-1: Motivation for an output stationary dataflow. In (a), partial sum outputs
are written out to on-chip memory (and potentially to off-chip memory), then read
back in so they can be accumulated or updates as the PE continues to compute
MACs. In (b), partial sums are held stationary in PE storage until accumulation is
done, and the completed partial sum output is written out once. Since data movement
across memory levels (PE ↔ on-chip buffer ↔ off-chip DRAM) gets increasingly more
expensive, both in terms of latency and energy [1], option (b) is a desirable choice.

continuously add to a row of partial sums until channel-wise accumulation is complete.

Holding this row of partial sums within the processing elements would avoid the need

to continuously write out the partial sums to a local buffer and then read the values

back in, as highlighted in Figure 4-1. Hence, an output-stationary dataflow that

holds partial sums within the processing elements during channel-wise accumulation

is another potential dataflow choice.

Deciding between weight-stationary and output-stationary dataflows for pointwise

convolution comes down to determining which dataflow yields a greater reduction in

data movement across the memory hierarchy. Table 4.1 compares data movement

in each of the two dataflow choices. In the weight stationary dataflow, weights are

held locally while partial sums are written out and then read back in. In the output-

stationary dataflow, partial sums are held locally, while weights are only read in.

By computing read and write statistics across all convolutional layers in FastDepth,

we determine there to be roughly 10× as much data movement of partial sums as

of weights. Hence, to minimize pointwise partial sum movement and reduce data

movement across the memory hierarchy, we select the output-stationary dataflow for

pointwise convolution. We also seek to minimize weight movement by caching weights

in on-chip buffers, such that every weight is read in from off-chip memory just once.

88

Dataflow Datatype Moved Across
Memory Hierarchy

Total Values
and Bitwidth1

Reads or
Writes2

Data
Moved

weight-stationary pointwise partial sums ∼2.6M (24b per psum) W, then R 15.6MB
output-stationary pointwise weights ∼1.3M (10b per weight) R only 1.6MB

1 Assuming bitwidths that we will be using in our accelerator design.
2 Assuming each weight is read once and each partial sum is written out and read once.

Table 4.1: Selecting a dataflow for pointwise convolution: choosing between weight-
stationary and output-stationary. The weight-stationary dataflow suffers from high
overhead of writing and reading high-bitwidth pointwise partial sums. The output-
stationary dataflow avoids this overhead by holding partial sums within processing
elements, thus achieving roughly 10× reduction in data movement. This makes it a
more appealing choice for pointwise convolution.

Dataflow Visualization by Example

Figures 4-2 and 4-3 provide a visualization of how our dataflow processes depthwise

separable layers. This visualization uses a toy example consisting of a depthwise

convolution of a 9×9×𝐶 input feature map with a 3×3×𝐶 kernel, followed by a

pointwise convolution with a 1×1×𝐶×𝑀 kernel, producing a 7×7×𝑀 output feature

map. It accounts for depthwise and pointwise bias addition as well.

We use a 3×7 array of PEs as a basis. The rationale for this is as follows: Every

column of the array will work on a single row of the output feature map. Every row

of the array will compute either a 1D convolution with single row of the weight kernel

(in depthwise convolution) or a different output channel (in pointwise convolution).

Arrows in these figures represent data reuse, e.g., depthwise input feature maps

are reused diagonally across PEs, while weights are reused horizontally. Analogously,

pointwise input feature maps (that are just the depthwise outputs) are reused ver-

tically, while weights are again reused horizontally. Boxes shown within the PEs

represent storage of completed output feature map rows.

4.2.2 On Serializing vs. Pipelining the Dataflow Design

In our dataflow design, all PEs are envisioned to be reconfigurable, i.e., they support

both the row-stationary and output-stationary dataflows and toggle between the two

when computing a depthwise separable layer. This approach serializes the process-

89

9

9

C

7

7

C

CC

3
3

row 1 row 2 row 3 row 4 row 5 row 6 row 7

row 1
row 2

row 3
row 4

row 5
row 6

row 7

row 8

row 9

input
feature

map

row 2

row 3

row 1

depthwise
weights

depthwise
bias

depthwise
outputs

C1

fro
m

 o
n-

ch
ip

 m
em

or
y to on-chip m

em
ory

Input Feature Map Depthwise
Filter

Depthwise
Bias

Depthwise Output

Figure 4-2: Row-stationary dataflow for depthwise convolution. Each processing
element (PE), depicted as a gray box, takes a row of input feature map values and
a row of depthwise filter weights as input; after convolving the rows, the PE sends
its result to the PE below it for spatial accumulation. The bottom-most PEs contain
completed results from the 3×3 convolution and can send those out to memory. This
dataflow computes up to 7 rows from a single channel of depthwise outputs at once.

90

C

7

7

C

7

7

M1
1

M

row 1 row 2 row 3 row 4 row 5 row 6 row 7

ro
w

 1

ro
w

 2

ro
w

 3

ro
w

 4

ro
w

 5

ro
w

 6

ro
w

 7

depthwise
outputs

pointwise
weights

pointwise
biases

pointwise
outputs

row 1 row 2 row 3 row 4 row 5 row 6 row 7

row 1 row 2 row 3 row 4 row 5 row 6 row 7

M1

M2

M2

M1

M3

M3

pointwise
outputs

pointwise
outputs

M3

M2

M1

fro
m

 o
n-

ch
ip

 m
em

or
y to on-chip m

em
ory

C1 C2 C3 …

Depthwise Output Pointwise Output

Pointwise Filter

Pointwise Bias

M

Figure 4-3: Output-stationary dataflow for pointwise convolution. This begins after
the row-stationary dataflow has completed all depthwise channel outputs. These
depthwise outputs are then streamed channel-by-channel back into the processing
elements. Each row of PEs in the array receives pointwise weights for all channels
from one filter. This allows every PE in the row to complete channel-wise aggregation
for a unique row of a single pointwise output channel. Different rows of PEs work on
different pointwise output channels. Every PE will hold its row of pointwise partial
sums stationary until channel-wise accumulation is complete. This dataflow computes
up to 7 rows from 3 channels of pointwise outputs at once.

91

ing of depthwise and pointwise convolutions. An alternate approach would have been

to pipeline the two convolutions, e.g., by having a smaller array work on the depth-

wise operation and a larger array work on the more dominant pointwise operation.

Figure 4-4 depicts how the PE array could be partitioned into smaller dedicated ar-

rays. It also points to the key advantages and disadvantages of the two approaches.

While a serialized approach allows for greater flexibility in utilizing the PE array, it

necessitates a reconfigurable PE design that can be larger and more complex than

an otherwise more dedicated PE. A pipelined approach, on the other hand, allows

for a simpler PE design but complicates load balancing and potential data transfer

between the two pipelined operations — load balancing becomes especially critical to

keeping PEs working on different tasks busy.

We perform a preliminary analysis with analytical computations comparing these

serialized and pipelined approaches. In this analysis, we assume that the partitioned

depthwise PE array has a height of at least 3 rows to natively support 3×3 convolution

using the row-stationary dataflow. We also assume that the width of the depthwise

PE array will match one of the dimensions of the pointwise array so that the outputs

from the PEs in depthwise array could be immediately transferred to those in point-

wise array (to avoid caching them). We then experiment with the remaining flexible

dimensions to gauge compute speed and PE utilization in the pipelined approach as

compared to the serialized approach. Our analysis results are shown in Figure 4-5

and can be summarized as follows:

∙ For a small PE array (e.g., less than 100 PEs), the analysis shows that a serial-

ized approach will be faster. Pointwise convolution is known to be the dominant

operation in a depthwise separable layer. When applying a pipelined approach

with a small number of PEs, partitioning a separate array for the depthwise op-

eration effectively takes resources away from the dominant pointwise operation.

This slows down layer computation as a whole.

∙ For a large PE array (e.g., more than 500 PEs), a serialized approach will allow

for greater parallelism than a pipelined approach. Since both the depthwise

92

Reconfigurable PE Array Depthwise PE Array

Pointwise PE Array

vs.

⇢ More flexible design
⇢ Complex reconfigurable PEs

⇢ Simpler dedicated PEs
⇢ More difficult load balancing

DepthwisePointwise

Figure 4-4: Partitioning the PE array for serialized vs. pipelined dataflow approaches.
A serialized approach requires a reconfigurable PE array that can toggle, e.g., be-
tween depthwise and pointwise convolution dataflows. This allows for more flexible
allocation of PE resources but increases the complexity of PE design and control
logic. A pipelined approach sets aside subsets of the PE array dedicated to each of
the pipelined operations, which in this case are the depthwise and pointwise con-
volutions. This allows for simpler PE designs in each of the sub-arrays; however,
since pointwise computations dominate in quantity over depthwise computations, a
pipelined approach makes load balancing across dedicated PE arrays more difficult.

93

and pointwise operations will get to benefit from this greater parallelism, the

serialized approach will again be faster overall.

∙ For a medium-sized PE array (e.g., between 100 and 500 PEs), the two ap-

proaches are much closer to each other performance-wise, yet the serialized

approach still edges out the pipelined approach since it always utilizes the full

PE array for the dominant pointwise operation.

0

1

2

3

4

10 100 1000 10000

Pi
pe

lin
ed

/S
er

ia
liz

ed
Sp

ee
d

O
ve

rh
ea

d

Number of PEs Used (on a logarithmic scale)

Figure 4-5: Comparing serialized vs. pipelined dataflow approaches. Our analysis
shows that a pipelined approach will be at least slightly slower than a serialized
approach over a wide range of PE array sizes. This figure plots the speed overhead
of a pipelined approach relative to a serialized one, where speeds are proxied by
analytically computing clock cycles for all depthwise separable convolutional layers
in FastDepth’s MobileNet encoder.

We note that under the assumptions we make in partitioning our PE array, our

analysis does not consider all degrees of freedom when selecting dimensions for the

depthwise and pointwise arrays. We also do not consider caching to facilitate load

balancing between the two pipelined convolutions. As a result, our analysis is not

exhaustive. However, it serves as a guiding factor in our selection of a serialized

approach for our PE array design.

4.3 Accelerator Design

A high-level architecture diagram of our accelerator design is shown in Figure 4-6.

The accelerator is built up of blocks of processing elements (PEs) and a memory

94

6

M
od

el
 P

ar
am

et
er

 G
LB

s
[w

ei
gh

ts
][

bi
as

 &
 q

ua
nt

. f
ac

to
rs

]

Global Buffer (GLB) Level

Pointwise
Output
Buffer

Block 2
Block 3
Block 4
Block 5
Block 6
Block 7
Block 8

Block Level

Processing Element (PE)

Block 1

8b x 10b + 24b
Local Register Storage

input feature map, filters, bias,
quant. factors, partial sums

depthwise control
pointwise control

conv
mode

Fe
at

ur
e

M
ap

 G
LB

s
[in

pu
tt

ile
s]

[re
sid

ua
ls

kip
 ti

le
s]

Depthwise
Output
Buffer

PE

24b + 32b

MAC

ADDER

Figure 4-6: High-level accelerator diagram. The innermost module is the processing
element (PE) that computes multiply-accumulate operations. PEs are arranged in
blocks that compute depthwise and pointwise convolutions. Blocks can be replicated
for more compute parallelism. The resulting PE array interfaces with on-chip memory
consisting of local PE storage, block-level storage, and larger global buffers (GLBs).

hierarchy consisting of local PE storage, block-level storage, and larger global buffers

(GLBs) that are banked to provide sufficient data bandwidth for all blocks of PEs.

The previous section describes the dataflows used in our accelerator and depicts

how processing elements are interconnected via these dataflows. Here, Sections 4.3.1

and 4.3.2 describe the remaining key aspects of the compute core design: the pro-

cessing element itself, and how the PE array is constructed. Sections 4.3.3 and 4.3.4

then describe the memory hierarchy designed around the compute core.

4.3.1 Compute Core

Processing Element Design

A processing element is the innermost module of the compute core. It is responsible

for computing the multiply-and-accumulate operations (MACs) that make up the

convolutions in the FastDepth network. A typical MAC operation looks like:

feature map value × weight value + accumulated value

We assume that after quantizing and transforming FastDepth layers to run on

the accelerator, feature map values do not exceed 8 bits and weight values do not

95

exceed 10 bits.1 Multiplying values of these bitwidths results in a product no larger

than 8+10=18 bits. Supposing that such 18-bit values need to be accumulated across

channels (as in pointwise convolution), the bitwidth required for accumulation de-

pends on the largest channel dimension in FastDepth. Since all channel dimensions

in the pruned FastDepth network are under 1024 (up to 10 bits), the largest possible

accumulation in this case is 18+10=28 bits. However, we find that the full bit range

of feature map and weight values is not used in any of the layers and the 24 bits

is enough for accumulation. Hence, the PE is designed to perform 8-bit by 10-bit

multiplication with 24-bit accumulation.

Each of the layers in FastDepth also has a bias that needs to be added to the

completed convolution. We assume these biases to be 32-bit values that need to be

added to the 24-bit accumulated values mentioned previously. Hence, the PE also

has an adder to perform 24-bit and 32-bit addition.

This MAC and addition arithmetic is depicted in the PE diagram shown in Fig-

ure 4-7. The inputs and outputs of these operations, along with their bitwidths, are

tabulated in Table 4.2. These values are all stored in registers local to the PE. They

are held for the duration of computation over a single feature map row, after which

they may be overwritten with new values or kept for reuse. New values are prefetched

as necessary to keep PEs as continuously busy as possible.

Following MAC computation and bias addition, a nonlinear ReLU activation func-

tion may applied to the completed partial sums. Since partial sums are signed values,

ReLU is easily performed by checking the most significant bit (effectively the sign bit)

and zero-ing out the value if the bit is a 1. Afterwards, the partial sum is quantized to

an 8-bit unsigned value using a predetermined quantization factor. Every PE has the

capability to perform ReLU and quantization on streaming data on-the-fly. Whether

this capability is enabled depends on the type of convolution being performed. Dur-

ing depthwise convolution, a PE may send its outputs to a neighboring PE for spatial

accumulation; in this case, the PE does not perform ReLU or quantization. During

pointwise convolution, however, every PE will generate complete outputs that must

1Quantization of FastDepth layers is described in Section 4.4.2.

96

PWO
DWO

IFM
DWO

FW

BS

Input Feature Map Row
(8b Reg)

Filter Row
(10b Reg)

Partial Sums Row
(24b Reg)

Bias Value
(32b Reg)

0

initiating
accumulation?

conv mode,
topmost PE

in block?

MAC

Bias
Addition

>>
Quantization

ReLU conv mode

quantization
factor

partial sum
from PE above

conv mode

conv mode
partial sum
to PE below

IFM FWinput feature map GLB filter weights GLB BS bias GLB

DWO depthwise outputs buffer PWO pointwise outputs buffer

5

8

10

32

24

8

32

32

ready for ifmap
ready for weight

ready for bias

Figure 4-7: Diagram of a processing element. The PE performs multiply-accumulate
operations (MACs) and bias addition; it also applies ReLU and quantization functions
to values being written out to on-chip buffers. The PE performs row-wise processing
(e.g., 1D convolutions of rows, element-wise addition of rows) and stores a row of an
input feature map, a filter, and partial psums at a time. Some datapaths and control
logic are reconfigurable based on the convolution mode (depthwise vs. pointwise).

Datatype Bitwidth
input feature map 8-bit unsigned

depthwise layer weights 10-bit signed
depthwise layer bias 32-bit signed

depthwise accumulated values 24-bit signed
depthwise outputs 8-bit unsigned

pointwise layer weights 10-bit signed
pointwise layer bias 32-bit signed

pointwise accumulated values 24-bit signed
pointwise outputs 8-bit unsigned

quantization factors 5-bit unsigned

Table 4.2: Datatypes and bitwidths processed within a processing element.

97

Common
to Both
(43%)

Depthwise
Conv. Only

(29%)

Pointwise
Conv. Only

(28%)

Figure 4-8: Logic breakdown comparing depthwise- and pointwise-specific logic within
the PE. Logic here refers primarily to LUTs and registers found in the PE netlist after
synthesis. Common logic mostly includes shared registers. Depthwise- and pointwise-
specific logic includes counters and control logic for those convolutions.

undergo ReLU and quantization prior to being sent out to an output buffer.

In order to support both depthwise and pointwise convolutions, each PE contains

control logic to enable both the row-stationary and output-stationary dataflows, and

can toggle between them depending on the type of convolution being performed.

This reconfigurability allows for a single homogeneous PE design but incurs a logic

overhead. To reduce this overhead, we avoid replicating register storage, e.g. the same

registers used to store weights, biases, and partial sums during depthwise convolution

are used during pointwise convolution. Similarly, the MAC unit and the adder are

also reused. Figure 4-8 illustrates the partition of logic nets within the reconfigurable

PE into those needed for depthwise convolution, needed for pointwise convolution,

and shared between the two convolution modes. Depthwise-specific and pointwise-

specific logic take up roughly 29% and 28%, respectively, of all the PE logic, with

the remaining 43% of logic being reused for both operations. Based on this, PEs

dedicated solely for depthwise or pointwise convolution would use around 72% or

71% of logic nets compared to the reconfigurable PE. This gives an estimate for the

logic overhead of reconfigurability in the PE: when compared to a PE design dedicated

solely for depthwise convolution or one dedicated solely for pointwise convolution, the

reconfigurable PE design incurs roughly 100%/71% = 1.4 or 40% logic overhead.

This analysis excludes logic overhead that is datapath related: e.g., multiplexing

98

the buses carrying depthwise vs. pointwise input feature maps, and demultiplexing

the bus carrying partial sums (to flow between PEs in the depthwise case or to be

held stationary within PEs for accumulation in the pointwise case). This is due to the

breakdown in Figure 4-8 being calculated based on logic nets found in just the PE,

which does not include the far more distributed logic comprising the network-on-chip

that delivers data to the PE. However, the datapath or network-on-chip logic is not

replicated nearly as much as the PEs are; hence, we use the PE logic breakdown as

a first-order estimate of reconfigurability overhead.

Processing Element Array

A single processing element performs computation on a single feature map row at a

time. For depthwise convolution, an individual PE processes a row of input feature

map values and a row of depthwise weights, producing a row of depthwise partial

sums before moving onto the next row. For pointwise convolution, an individual PE

processes a row of depthwise partial sums and a single pointwise weight, producing a

row of pointwise partial sums before moving onto the next row.

We now explain how the PE array is built up in a modular fashion. We use

depthwise convolution as a case scenario first and then extend our discussion to how

the PE array processes pointwise convolution. Since our PE array is design to directly

support our dataflow design, it may help to refer back to Figure 4-2.

PE Column. In order to implement the row-stationary dataflow for depthwise

convolution, we create a column of PEs, where the height of the column equals the

height of the convolution kernel. Most depthwise convolutions in FastDepth use 3×3

kernels, so we define a column to have three PEs. Each of these PEs computes

a 1D convolution on a row of input feature map values and a row of depthwise

weights. This row-wise filter parallelism allows for the results of these three 1D

convolutions to stay local within the PE interconnect: they flow down through the

PE column and are aggregated such that the 1D convolution results of PE(𝑖,𝑗) serve

as the bias input to PE(𝑖,𝑗+1), where 𝑖 and 𝑗 refer respectively to the column and row

indices of the PE location in the array. This becomes equivalent to computing a 2D

99

Input Tile
Output TilePE

Col 1-7

Row
 1-3

Computed Output Tile Rows

PE Block

Figure 4-9: Row-wise output parallelism in the PE block. Each column of PEs works
on a different row of convolution outputs. The number of columns equals the number
of rows in an output tile, which is selected to be 7, the greatest common factor of
output feature map dimensions in FastDepth layers.

3×3 convolution. Thus, a column of PEs will produce a single row of completed 3×3

depthwise convolution outputs that are ready to be read out to a buffer.

PE Block. In order to enable row-wise output parallelism, we group several

columns of PEs together so that each column can work on a different row of depthwise

convolution outputs. This approach exploits diagonal reuse of input feature map rows

and horizontal reuse of depthwise weights. The number of columns is selected to be

7, the greatest common factor of output feature map dimensions P and Q (defined

in Table 1.1) across all FastDepth layers. This is to ensure that all PE columns in

the array are adequately utilized. Spatial and temporal utilization of PEs will be

discussed more in Sections 4.5.3 and 4.5.3.

The 3×7 array of PEs discussed so far forms what we call a PE block. Figure 4-9

illustrates this concept of a PE block and the row-wise parallelism it exhibits. A block

can work on 7 rows of a single-channel depthwise convolution output at a time. The

bottom-most PEs in the block will contain completed rows of depthwise partial sums

that will be quantized prior to being stored in the block’s depthwise psums buffer.

PE Array. The overall PE array simply consists of multiple PE blocks. Given

that a PE block works on a single depthwise channel at a time, and that depthwise

convolutions often involve many channels, there is an opportunity for channel-wise

100

parallelism. PE blocks are replicated so that each one works on a different feature

map channel. This level of parallelism is more coarse-grained than the row-wise filter

and output parallelism discussed earlier. The number of blocks is primarily con-

strained by the number of arithmetic units or the amount of logic you have available.

In our design, we use an array of 8 PE blocks, as an array of that size fits onto our

target FPGA hardware. It merits to note that 8 is also the greatest common factor

of channel dimensions across all FastDepth layers, meaning that an array of 8 PE

blocks will achieve full spatial utilization during depthwise convolution.

We extend the PE array’s functionality from depthwise convolution to point-

wise convolution in a straightforward manner. PE blocks still exhibit row-wise and

channel-wise parallelism. The main difference now is that there is no need for spatial

accumulation, so every row of PEs in a given PE block can be treated independently.

To maximize channel-wise parallelism, we assign each row of PEs to process a single

output channel of the pointwise convolution. Every PE then computes a distinct fea-

ture map row within that output channel. Since our design uses an output-stationary

dataflow for pointwise operations, every PE will hold the row for local accumulation

until the pointwise convolution is done. At that point, every individual PE will have

a completed row of the output feature map ready to be read out to an output buffer.

To summarize, our accelerator is built up of 8 PE blocks, each of which contains

a 3×7 sub-array of PEs. This results in a PE array with a total PE count of 168

PEs. Figure 4-10 shows how the PE array can process up to 8 input channels in

parallel during depthwise convolution and up to 24 output channels in parallel during

pointwise convolution. The array can compute up to 7 rows of an output feature map

at once (i.e., an output tile of height 7) during both types of convolutions.

Processing Element Interconnect

PE interconnect refers to how PEs communicate with each other. PEs in a given

PE block are effectively isolated from PEs in a different block, i.e., there is no direct

communication between PEs across blocks. Within a PE block, each column of PEs

operates in a standalone manner; different columns work to compute different output

101

Input Feature Map

CC

3
3

Depthwise
Filter

Depthwise
Bias

Depthwise Output

W

H

C

WT

HT

Q

P

C

QT

PT

CC

3
3

W

H

C

Q

P

C

Each PE block processes
one input channel. Our
array has 8 blocks, so it
can process up to 8
input channels at once.

Once the first 8 channels of
depthwise outputs are done,
the next 8 channels are
processed... and so on, until
all C channels are done.

The array begins processing an input tile of shape HT × WT × C. The array first performs depthwise
convolution to produce depthwise outputs for C channels.

The array has completed all depthwise outputs for the given tile and now toggles to perform pointwise
convolution. Depthwise outputs for all C channels are used in computing pointwise outputs for M channels.

Depthwise Output Pointwise Output

Q

P

C

QT

PT

Q

P

M

QT

PT

C

1
1

M

Pointwise Filter
Pointwise Bias

M

Q

P

C

Q

P

M
C

1
1

M
M

Each PE block has 3 rows
of PEs, and each row
works on a single output
channel. Thus, the array
can compute up to 24
output channels at once.

Depthwise outputs are read
back into the array again so
that the next 24 output
channels can be computed…
and so on, until at M output
channels are done.

The array has completed all pointwise outputs for the given tile. The output tile has shape PT × QT × M and
can be written out. The array now toggles back to depthwise convolution and waits for a new input tile.

Figure 4-10: Diagram illustrating how the PE array processes channels during depth-
wise and pointwise convolution. Shown for a single tile that may be smaller than
the input or output feature map (e.g., as shown here by the darker-shaded portions
within feature maps). To cover the entire feature map, tiles are iterated through in a
raster scan — first horizontally, then vertically.

102

feature map rows and therefore do not depend on results from each other. The only

direct connections present between PEs are within a column. As described in Section

4.3.1, to perform spatial accumulation during depthwise convolution, each PE in a

column sends its partial sums down the column to the PE below it; in other words,

a PE within a column will depend on results from PEs above it. During pointwise

convolution, however, there is no spatial accumulation and each PE in a column

operates independently. PE interconnect forms part of the network-on-chip (NoC).

4.3.2 Network-on-Chip (NoC)

The network-on-chip manages data delivery to individual PEs as well as between PEs.

It directly interfaces with on-chip memory and with the PE array.

In our design, the NoC side interfacing with PEs is local to a PE block, i.e., it is

solely responsible for connecting with the 3×7=21 PEs in the block. Replicating a PE

block replicates this NoC within it. The NoC side interfacing with on-chip memory

is, on the contrary, not local to a PE block, as it is multiplexed to facilitate reading

from on-chip buffers in different blocks. Here, we focus on the NoC side interfacing

with PEs, while on-chip memory is discussed in the following Section 4.3.3.

Inside a PE block, the NoC implements the data delivery patterns seen in row-

stationary and output-stationary dataflows, as illustrated in Figures 4-2 and 4-3 re-

spectively. Communication via the NoC is multicast :

∙ Weights read in from on-chip memory are multicast to PEs across rows during

both depthwise and pointwise convolution. All PEs in any given row always

receive the same depthwise and pointwise weight values.

∙ Incoming feature map values are multicast to PEs across diagonals during depth-

wise convolution and across columns during pointwise convolution.

∙ Incoming bias values are multicast across the topmost PE row during depthwise

convolution and across all PE rows during pointwise convolution.

103

Outgoing values from a PE are routed depending on convolution type and PE

location. In depthwise convolution, PEs produce depthwise partial sums that get

communicated from PE-to-PE within a column: output partial sums from PE(𝑖,𝑗)

directly feed as an input to PE(𝑖,𝑗+1), where 𝑖 and 𝑗 refer respectively to the column

and row indices of the PE in the array. The bottom-most PE row contains completed

convolution outputs that can be quantized and sent out into a depthwise output

buffer. In pointwise convolution, every row of PEs produces pointwise partial sums

independently of each other; these partial sums are held within the PEs themselves

until pointwise computation is done. Afterwards, every PE row contains completed

convolution outputs that can be quantized and sent out into a pointwise output buffer.

To summarize, the NoC uses multicast communication to deliver inputs being

read in from on-chip memory. For data that can be immediately reused within the

PE network (e.g., depthwise partial sums that are accumulated in registers within

individual PEs), the NoC keeps this data local to PEs through PE-to-PE communi-

cation. Lastly, for delivering outputs to be written out to on-chip memory, the NoC

connects a row of PEs to an appropriate output buffer.

NoC Bandwidth and Datapath Widths

A critical goal of the NoC is to provide enough bandwidth for data delivery to support

the highly parallelized processing in the PE array. Our design seeks to keep all PEs

in sync with each other. This affects the datapath widths within the NoC:

∙ During both depthwise and pointwise convolution, weights need to be delivered

along 3 PE rows in parallel. Each weight is 10 bits, which corresponds to a

30-bit datapath in the weights NoC.

∙ During depthwise convolution, input feature map values need to be delivered

along 9 PE diagonals in parallel. During pointwise convolution, feature map

values need to be delivered along 7 PE columns in parallel. Since each fea-

ture map value is 8 bits, this corresponds to a 72-bit and a 56-bit datapath,

respectively. The input feature map NoC toggles between these two datapaths.

104

∙ During depthwise convolution, biases need to be delivered along a single PE

row. During pointwise convolution, biases need to be delivered along 3 PE rows

in parallel. Since each bias is 32 bits, this corresponds to a 32-bit and a 96-bit

datapath, respectively. The bias NoC toggles between the two datapaths.

∙ Incomplete depthwise partial sums are 32 bits and need to be delivered along PE

columns. The NoC includes 32-bit connections between PEs in every column.

∙ Completed depthwise outputs are quantized to 8-bit values and need to be

written out from all 7 PEs in the bottom-most row at once. This necessitates a

56-bit datapath from the bottom-most PE row to the depthwise output buffer.

∙ Completed pointwise outputs are quantized to 8-bit values and need to be writ-

ten out from all 7 PEs in each of 3 rows at once. This necessitates a 56-bit

datapath from each PE row to the pointwise output buffer.

The NoC and its various datapath widths are illustrated alongside on-chip memory

in Figure 4-11. The on-chip memory hierarchy is discussed more in Section 4.3.3.

Handling Strides and Skip Connections in the Input Feature Map NoC

One design challenge concerning the input feature map NoC is in handling different

convolution strides. While most convolutions in FastDepth have a stride of 1, sev-

eral layers in the MobileNet encoder have a stride of 2. When supporting different

convolution strides in our design, we keep the output feature map tile size fixed, i.e.

we design so that the PE array produces the same-sized output tile. As compared to

convolving with a stride of 1, convolving with a stride of 2 covers 2× as much input

in each of the height and width dimensions (equaling to 4× as much input overall).

Hence, in order to compute the same-sized output tile when convolving with a stride

2, our design needs to read in 4× as many input values for that convolution. We

achieve this by setting aside enough on-chip memory to be able to store up to four

input feature map tiles at once. The tiles are loaded on-chip sequentially. Afterwards,

when reading from on-chip memory into the PE array, we buffer individual channels

105

Depthwise outputs
accessed in order:

Channel 1 (from block 1)
Channel 2 (from block 2)

Channel 8 (from block 8)
Channel 9 (from block 1)

Block 1

Depthwise
Output
Buffer

Block 8

Depthwise
Output
Buffer

No
C

No
C

Re
sid

ua
l S

kip
 G

LB

Bi
as

 &
 Q

ua
nt

. F
ac

to
rs

 G
LB

In
pu

t F
ea

tu
re

 M
ap

 G
LB

Fi
lte

r W
ei

gh
ts

 G
LB

32

30

72 56

32

30

72

block
selector

GL
B

Ba
nk

 1

GL
B

Ba
nk

 1

GL
B

Ba
nk

 1

GL
B

Ba
nk

 1

GL
B

Ba
nk

 8

GL
B

Ba
nk

 8

GL
B

Ba
nk

 8

GL
B

Ba
nk

 8

(a) during depthwise convolution

Block 1

Block 8Bi
as

 &
 Q

ua
nt

. F
ac

to
rs

 G
LB

Fi
lte

r W
ei

gh
ts

 G
LB

No
C

No
C

96

30

56 56

56

56

96

30

56 56

56

56 Buffer Bank 1

Buffer Bank 2

Buffer Bank 3

Buffer Bank 1

Buffer Bank 2

Buffer Bank 3

GL
B

Ba
nk

 1

GL
B

Ba
nk

 1

GL
B

Ba
nk

 8

GL
B

Ba
nk

 8

block
selector

bank
selector

bank
selector

Pointwise

Output

Buffer

Pointwise

Output

Buffer

Pointwise outputs
accessed in order:

Channel 1 (from block 1, bank 1)
Channel 2 (from block 1, bank 2)
Channel 3 (from block 1, bank 3)
Channel 4 (from block 2, bank 1)

Channel 24 (from block 8, bank 3)
Channel 25 (from block 1, bank 1)

Depthwise outputs read in channel-by-channel

(b) during pointwise convolution

Figure 4-11: Network-on-Chip (NoC) connecting PE blocks to on-chip memory. Input
feature maps, weights, and biases are delivered to PE blocks from on-chip global
buffers (GLBs). There is a separate GLB for each of the different datatypes, and all
GLBs are banked to provide parallel read access to all PE blocks. After convolution,
outputs are held within PE blocks; each PE block has dedicated storage for the
depthwise and pointwise output channels computed by that block. In-order read
access for those outputs is controlled via block selectors (multiplexers).

106

within the tiles and align them in a 2×2 window. This allows us to generate a longer

row of input feature map values that we can stream into a PE block. The NoC within

the PE block then performs vertical striding, skipping rows as necessary. The PEs

that process the rows perform horizontal striding, skipping over values as necessary.

This handling of convolution strides is illustrated in Figure 4-12.

Another design challenge is supporting the addition of residual feature maps that

have been passed along skip connections. We perform this addition as part of the

logic for input feature map delivery. First, we read in the residual feature map tiles

just as we read in the input feature map tiles; the two sets of tiles are stored in disjoint

on-chip buffers. We then pass one or more tiles (depending on the convolution stride)

through the buffer and alignment logic described above. Following that, we optionally

add the residual tile to the input tile on a row-by-row basis prior as the feature map

rows are delivered to PE blocks. This is visualized in Figure 4-13.

4.3.3 On-chip Memory Hierarchy

On-chip memory serves several key purposes: on-chip buffers can hold data that is

reused during processing, thereby reducing time- and energy-costly off-chip memory

accesses. Buffers can also store pre-fetched data, which helps to hide memory read

latency. Lastly, buffers can cache outputs from a previous computation to allow the

next computation to begin before all previous outputs are completely copied out; this

helps to hide memory write latency. On-chip memories are typically more limited

in size than off-chip memories, requiring more deliberation when deciding how to

partition these memories and which data to store in them.

On-chip memory on our target platform — the ZU3EG MPSoC — comes in the

form of Block RAM (BRAM) and distributed RAM. There is 7.6Mb of BRAM avail-

able on the FPGA, consisting of 216 blocks of 36Kb RAM (that can be reconfigured

to 432 blocks of 18Kb RAM). Additionally, there is up to 1.8Mb of distributed RAM

that can be implemented via lookup tables (LUTs). In general, BRAM operations

are slower than distributed RAM ones, e.g. a read operations to BRAM has a latency

107

Figure 2.5: (No zero padding, arbitrary strides) Convolving a 3⇥ 3 kernel over
a 5 ⇥ 5 input using 2 ⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and p = 0).

Figure 2.6: (Arbitrary padding and strides) Convolving a 3 ⇥ 3 kernel over a
5 ⇥ 5 input padded with a 1 ⇥ 1 border of zeros using 2 ⇥ 2 strides (i.e., i = 5,
k = 3, s = 2 and p = 1).

Figure 2.7: (Arbitrary padding and strides) Convolving a 3 ⇥ 3 kernel over a
6 ⇥ 6 input padded with a 1 ⇥ 1 border of zeros using 2 ⇥ 2 strides (i.e., i = 6,
k = 3, s = 2 and p = 1). In this case, the bottom row and right column of the
zero padded input are not covered by the kernel.

(a) The kernel has to slide two steps
to the right to touch the right side of
the input (and equivalently downwards).
Adding one to account for the initial ker-
nel position, the output size is 3 ⇥ 3.

(b) The kernel has to slide one step of
size two to the right to touch the right
side of the input (and equivalently down-
wards). Adding one to account for the
initial kernel position, the output size is
2 ⇥ 2.

Figure 2.8: Counting kernel positions.

17

(a) Convolution with a horizontal and vertical stride of 2. The input feature map is shown
in blue, the filter in gray, and the output feature map in teal. Figure taken from [5].

1 2 3 4 5 6 7

2 3 4 5 6 7 8

4 5 6 7 8 93

1 3 5 7 9 11 13

2 4 6 8 10 12 14

5 7 9 11 13 153

Input Feature Map Rows Multicast to PEs
Convolution Stride = 1

Input Feature Map Rows Multicast to PEs
Convolution Stride = 2

PE
 A

rra
y

PE
 A

rra
y

(b) Vertical striding performed by the NoC. The delivery pattern that the NoC uses to
multicast input feature map rows to PEs is set based on the convolution stride.

PWO
DWO

IFM
DWO

FW

BS

Input Feature Map Row
(8b Reg)

Filter Row
(10b Reg)

Partial Sums Row
(24b Reg)

Bias Value
(32b Reg)

0

initiating
accumulation?

conv mode,
topmost PE

in block?

MAC

Bias
Addition

>>
Quantization

ReLU conv mode

quantization
factor

partial sum
from PE above

conv mode

conv mode
partial sum
to PE below

IFM FWinput feature map GLB filter weights GLB BS bias GLB

DWO depthwise outputs buffer PWO pointwise outputs buffer

5

8

10

32

24

8

32

32

ready for ifmap
ready for weight

ready for bias

Input Feature Map Row PWO
DWO

IFM
DWO

FW

BS

Input Feature Map Row
(8b Reg)

Filter Row
(10b Reg)

Partial Sums Row
(24b Reg)

Bias Value
(32b Reg)

0

initiating
accumulation?

conv mode,
topmost PE

in block?

MAC

Bias
Addition

>>
Quantization

ReLU conv mode

quantization
factor

partial sum
from PE above

conv mode

conv mode
partial sum
to PE below

IFM FWinput feature map GLB filter weights GLB BS bias GLB

DWO depthwise outputs buffer PWO pointwise outputs buffer

5

8

10

32

24

8

32

32

ready for ifmap
ready for weight

ready for bias

Input Feature Map Row

(c) Horizontal striding performed by the PE. When convolving an input feature map row
with a filter row, the PE computes MACs over a window of the same length as the filter;
in our case, this length is 3. When the convolution stride is 1, the PE iterates through the
input feature map by shifting this window one element at a time. When the convolution
stride is 2, the PE shifts the window two elements over, as shown above.

Figure 4-12: Handling convolution strides in the NoC and the PE.

108

Tile (1, 0)

Tile (0, 0)

Tile (1, 1) Tile (1, 0) Tile (0, 1) Tile (0, 0)

Tile (1, 1)

Tile (1, 1) Tile (1, 0) Tile (0, 1) Tile (0, 0)

Tile (0, 1)

Tile (1, 0)

Tile (0, 0)

Tile (1, 1)

Tile (0, 1)

No
C

adding skip
connection?

Tiles stored in input feature map GLB

Tiles stored in residual feature map GLB

Buffer and logic
to align tiles

Residual fmap tile row is
optionally added to the

input fmap tile row.

NoC skips rows during vertical
striding. PEs skip values within a
row during horizontal striding.

Figure 4-13: Buffer and alignment logic to facilitate convolution striding and adding
skip connections. In both cases, four feature map tiles are buffered on-chip at once.

of 2 clock cycles,2 whereas with distributed RAM, the latency can be made to be 1

or even 0 clock cycles. However, distributed RAMs are much generally smaller and

contribute to LUT usage. BRAMs allow for coarse-grained partitioning of memory,

where the smallest possible partition is the size of a single BRAM. If one is instan-

tiated and only a small subset of its address space is used, the BRAM as a whole

will be underutilized. For buffers that are small and/or instantiated many times, it

is therefore advantageous to use memory that is more fine-grained, e.g., distributed

RAM, as using block RAM for these will result in under-utilized BRAMs. For larger

buffers, however, BRAMs are an appropriate choice.

Our accelerator utilizes both BRAM and distributed RAM depending on storage

needs at the PE, block, and array levels of the design:

Storage at the PE and NoC Level

Each PE contains storage for data it is actively processing, i.e., a row of input feature

map values, a row of filter weights, a row of accumulated partial sums, and a bias

value. PE storage uses distributed RAM and is replicated a large number of times as

the PE array is built up. Distributed RAM is also used to implement line buffers for

2Assuming that output registers have been set, which allows the BRAM to be clocked faster.

109

stitching tiles during striding and adding residual tiles in skip connections as part of

the input feature map NoC.

Buffers at the Block Level

There are two buffers in each PE block: one that holds outputs of depthwise convo-

lution, and one that holds outputs of pointwise convolution.

The goal of the depthwise output buffer is to completely avoid writing depth-

wise convolution results out to off-chip memory. Since the pointwise convolution that

follows depthwise convolution is an element-wise operation that scales and aggre-

gates along the channel dimension, it can be performed to completion on any-sized

feature map tile as long as all depthwise channels are available. To facilitate this,

the depthwise output buffer stores all channels output by the PEs during the depth-

wise operation — and then immediately feed these channels back to the PEs for the

pointwise operation. This exploits temporal reuse of depthwise outputs on-chip.

The goal of the pointwise output buffer is to cache pointwise convolution

outputs. This serves two purposes: (1) to lower PE idle time arising from stalled

computation due to bandwidth limitations when directly sending pointwise outputs

to off-chip memory, and (2) to allow reordering of pointwise outputs so that they can

be accessed in the correct order (e.g., consecutive channel-by-channel, as illustrated

with the selectors/multiplexers in Figure 4-11).

Both of these output buffers are implemented in block RAM. Every block has its

own set of dedicated buffers; this is to ensure that there is enough bandwidth to grab

outputs from the PE network in order to keep PEs busy and prevent having one PE

to wait for an adjacent one to write its outputs out. While this simplifies writing to

buffers, it makes reading slightly more complicated. Since every PE block processes a

disjoint set of input and output channels, their corresponding output buffers store a

disjoint set of outputs. For instance, in our array with 8 PE blocks, PE block 1 stores

depthwise outputs for channels 𝐶 = 1, 8, 16, ... and pointwise outputs for channels

𝑀 = 1, 2, 3, 25, 26, 27, 49, 50, 51,

In order for these outputs to be read out in the correct order, buffers from all of

110

the blocks need to be iterated through. Depthwise output buffers receive values from

just one PE row in the block and thus contain only one bank; iterating through these

is sequential — first, the buffer from block 1 is read from, then the buffer from block

2, and so on, looping through the blocks until all channels stored in the buffers have

been read out. Reads from pointwise output buffers function similarly. However,

these buffers receive values from three PE rows in parallel and thus contain three

banks, one for each PE row. Hence, when iterating through these buffers, the banks

need to be iterated through before a subsequent block’s buffer is read from. This is

visualized in Figure 4-11, where the multiplexers to the right of the buffers represent

selector-based iteration through all the blocks’ output buffers.

Global Buffers at the Array Level

There are four global buffers (GLBs) present at the array level: a feature map

GLB that stores up to four input feature map tiles at a time, another feature

map GLB that stores up to four residual feature map tiles when skip connections

are being added on-chip, a weights GLB that stores depthwise and pointwise weights

for an entire layer, and a bias GLB that stores depthwise and pointwise biases along

with channel-wise quantization factors. All GLBs are implemented in BRAM.

GLBs are populated with values streaming into the accelerator. They directly

interface with PE blocks in the compute core via the blocks’ NoC. The compute

core begins processing a layer after all GLBs have been initially loaded. Since the

weights and bias GLBs are large enough to store all the weights and biases for a

given layer, they are simply re-read from during computation until the layer has been

fully processed. The input feature map GLB, however, is only large enough to store

a tile (or, for strided convolutions, a subset of tiles) of the whole feature map at a

time. While the compute core works on one tile, the next tile begins is loaded; this

continues until all tiles have been iterated through. Once the compute core is ready

to process the next layer in the network, all GLBs are overwritten with parameters

and the first feature map tile for that layer.

In order for GLBs to provide sufficient bandwidth to the NoC within each of the

111

Datatype Width
per Bank

Depth
per Bank

of
Banks

Total
Size

BRAM
Used

bias & quant. factors GLB 37 bits 132 8 0.04Mb 0.29Mb
filter weights GLB 30 bits 11814 8 2.84Mb 3.02Mb
input fmap tile(s) GLB 72 bits 2376 8 1.37Mb 1.44Mb
residual fmap tile(s) GLB 72 bits 2376 8 1.37Mb 1.44Mb
depthwise output buffer 56 bits 462 8 0.21Mb 0.29Mb
pointwise output buffer 56 bits 154 24 0.21Mb 0.87Mb
aggregated over all GLBs and output buffers: 6.04Mb 7.35Mb

Table 4.3: Block RAM usage for on-chip GLBs and output buffers. Total size refers
to how much memory our design actively uses for each datatype. BRAM used refers
to how many 18Kb and 36Kb block RAMs are placed-and-routed in our design by
the synthesis and implementation process.

PE blocks in the PE array, the GLBs are banked; there is a bank dedicated to each

PE block. This allows GLBs to feed all PE blocks simultaneously in parallel, as

opposed to having a single un-banked memory block that serially sends to each of the

PE blocks. This further enforces independent operation of PE blocks, keeps them in

sync with each other, and maximizes parallelism and speed within the compute core.

Table 4.3 lists the sizes and parameters of these GLBs as well as the block-level

output buffers. The total amount of BRAM used is larger than the size of each

particular GLB or buffer. This is due to BRAM being available in fixed sizes (18Kb

or 36Kb on our target hardware, the Xilinx Zynq UltraScale+ MPSoC). Individual

GLB or buffer banks will not necessarily use the entirety of the implemented BRAM.3

BRAMs can be configured with a variety of widths, which determines whether

18Kb or 36Kb RAMs are instantiated. Since we use simple dual-port (SDP) BRAM

with a single read port and a single write port, our 18Kb BRAMs support word widths

of up to 36 bits and 36Kb BRAMs support word widths of up to 72 bits [117]. This

allows our large filter weights GLBs, using 30-bit word widths, to be more densely

built up out of a combination of 18Kb and 36Kb RAMs, resulting in 94% utilization.

Meanwhile, GLBs for biases and quantization factors use 37-bit word widths and are

3If this were an ASIC design with flexibility in how much or where to place on-chip memory, such
under-utilization of memory could be better handled. However, since this is a design targeting an
FPGA, we accept this under-utilization as long as there is enough BRAM available for use.

112

built up of 36Kb RAMs; they are not very populated (as there are so few biases

compared to all other datatypes), which contributes to a low utilization of only 14%.

In total, our design uses 7.35Mb of BRAM, approximately 97% of available on-

chip memory. While this is enough for our accelerator to process and compute a

single 7×7 output feature map tile in a single layer at a time, it is far too small to

store entire feature maps and parameters for all layers during inference. Hence, the

accelerator must also interface with the larger off-chip memory.

4.3.4 Off-chip Memory Interface

Our accelerator design targets the Ultra96 board that comes with a Zynq UltraScale+

MPSoC and 2GB LPDDR4 (512M×32) off-chip memory [118]. The MPSoC consists

of a Processing System (PS) unit and a Programmable Logic (PL) unit.4 The PL,

where our accelerator is implemented, has the ability to access the PS-side DRAM

via dedicated high-performance ports on the PS-PL interface. This section describes

how I/O in our design is set up, as well as the DMA (direct memory access) interface

that enables these DRAM reads and writes to and from our accelerator.

Top Level Design Wrapper

Figure 4-14 shows a block diagram illustrating the hierarchy of modules providing I/O

connectivity to our accelerator. The top_level_control module directly interfaces

with our accelerator logic (i.e. the GLBs and the PE array). I/O to this module

primarily consists of data and valid signals for different datatypes as well as output

control signals for monitoring or debugging. For compatibility with the AXI-Stream

protocol that will be necessary for PS-PL interfacing, we add the io_stream module.

This module handles input and output streams that are 64 bits wide and follow stan-

dard valid-ready handshaking. It performs time-multiplexing of inputs as necessary

to feed the correct datatypes into the top_level_control module.5

4The PS contains the ARM processor on the chip. The PL refers to the FPGA fabric.
5An input stream to a layer consists of bias values and quantization factors, followed by weight

values, and lastly, the input feature map tiles. The io_stream module determines when to assert
the valid signal for each datatype as these values stream in.

113

top_level_wrapper

io_stream

top_level_control

Accelerator
Logic

bias
quant
weights
ifmap

ofmap

loaded

32b

64b 32b

64b

AXI DMA

Zynq UltraScale+ MPSoC

A
X

I F
IF

O
 In

A
X

I F
IF

O
 O

u
t

32-bit wide AXI Stream 32-bit wide AXI Stream

LPDDR4 (512M x32)

conv_idx

GPIO (in) GPIO (out)
PS
PL

Figure 4-14: Top-level design wrapper and the DMA interface.

The DRAM onboard the Ultra96 supports a bus width of 32 bits. Hence, the

input and output streams to/from the io_stream module need to be up-sized (from

32 bits to 64 bits) and down-sized (from 64 bits to 32 bits), respectively. We add

custom modules to perform these functions. Together with the io_stream module,

they are packaged into the top_level_wrapper. This wrapper provides 32-bit I/O

connectivity that is compatible with the AXI protocol.

In addition to 32-bit I/O data streams, the top_level_wrapper exposes several

ports that connect to GPIO pins on the Zynq PS. Output GPIO pins from PS to the

PL carry the conv_idx bits to specify which layer is being run on the accelerator.

Input GPIO pins from the PL to the PS carry a bus of loaded signals specifying

whether GLBs within the accelerator have been loaded.

DMA Interface

For access to off-chip DRAM, we use AXI-based DMA. Our design integrates the AXI

DMA IP [119]; this core provides a high-bandwidth interface between AXI4 memory-

mapped reads/writes and data streams adhering to the AXI4-Stream protocol. The

114

AXI DMA IP operates on a clock frequency of 100 MHz and provides a total through-

put of 400 MBps on the memory-mapped-to-stream channel and 300 MBps on the

stream-to-memory-mapped channel [119].

The AXI DMA IP offers two modes of operation: simple mode, where DMA reads

from and writes to contiguous memory buffers; and Scatter/Gather mode, where an

optional Scatter/Gather Engine fetches and updates a set of buffer descriptors (that

may point to non-contiguous memory). Although Scatter/Gather mode offers more

flexibility, we use the simple mode for its easy setup and compatibility with the PYNQ

framework [120]. We set the Memory Map Data Width and the Stream Data Width

to 32 bits to match the DRAM bus width. Lastly, we set the Max Burst Size to 16.6

The AXI DMA IP connects to our accelerator design through FIFOs on the input

and output ends. These are smaller FIFOs (with depths of just a few elements) that

we add in addition to the DMA FIFOs already within the IP core. The purpose

of these smaller secondary FIFOs is to handle the tlast signal indicating when a

DMA transfer is complete. On the input end, this signal is simply stripped as our

accelerator automatically waits for new incoming data. On the output end, however,

this tlast signal must be manually asserted after the accelerator outputs all elements

of all tiles of an output feature map. Since this element count will vary between layers,

we specify it via an external input signal to the output-side FIFO.

4.4 Accelerator-Friendly FastDepth DNN

The dataflow and accelerator architecture that we have designed so far have been

tailored for depthwise separable layers with 3×3 and 1×1 kernels. Our goal is to

deploy all FastDepth layers onto this accelerator. However, not all of them use 3×3

kernels; notably, the spatial convolutions throughout in the decoder use 5×5 kernels.

This presents a challenge in mapping the decoder onto our proposed accelerator.

This motivates our algorithm-hardware co-design strategy. Instead of expanding

6We note that the AXI4-compliant DMA IP can support burst sizes up to 256; however, when
interfacing with the Zynq PS, there is a conversion to AXI3 in the AXI FIFO interface that limits
the transaction burst length to a maximum of 16 [121].

115

the versatility of our accelerator, which would incur inefficiencies, we keep our accel-

erator dedicated to 3×3 convolutions and instead re-examine the FastDepth network

itself. We experiment with cascaded convolutions and kernel decompositions to de-

velop an accelerator-friendly FastDepth network that achieves the same accuracy as

our original FastDepth DNN yet natively maps onto our accelerator. At this stage,

we also develop a quantization scheme for a lower-precision FastDepth DNN with

8-bit integer activations and 10-bit integer weights.

4.4.1 Network Modifications

Modifications made to the original FastDepth network — for it to be better com-

patible with our accelerator — largely focus on enabling the decomposition of 5×5

convolutions into 3×3 convolutions. As will be shown later in this section, the decom-

position is possible if: (1) interpolation and convolution operations can be grouped

such that interpolation takes place immediately before convolution, and (2) the type

of interpolation used is either zero-insertion or nearest-neighbors interpolation.7

A diagram of the original FastDepth network is shown again in Figure 4-15(a), now

with dotted boxes depicting possible groupings of nearest-neighbor interpolation and

5×5 convolution operations. However, not all of these groupings are decomposable:

in several groupings, skip connections are added in between the interpolation and the

convolution, thus breaking the structure that would enable decomposition. Hence,

the first modification to FastDepth that we explore is shifting these skip connections.

Shifting and Downsampling Skip Connections

Skip connections carry feature maps layers from earlier in the network to later layers

in the network. This allows those later layers to incorporate features extracted in

earlier layers, which has been shown to improve accuracy of networks performing

7This is because zero-insertion introduces sparsity from the zeros being inserted between the rows
and columns of input feature map values. Nearest-neighbors interpolation introduces structure from
a pixel value being copied into adjacent pixel locations, resulting in windows of pixels known to have
identical values. Performing a convolution on a feature map with such sparsity or structure leads to
data reuse that can be exploited.

116

Dense
Depth
Map

upsample
layer 2

upsample
layer 3

upsample
layer 4

upsample
layer 1

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C) Encoding Layers Decoding Layers
extract features from input upsample low-resolution features and merge into single high-resolution output

upsample
layer 5

224×224×32

1×1
conv

Dense
Depth
Map

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C)

224×224×32

1×1
conv

Dense
Depth
Map

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C)

224×224×32

1×1
conv

(a) original FastDepth network

Dense
Depth
Map

upsample
layer 2

upsample
layer 3

upsample
layer 4

upsample
layer 1

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C) Encoding Layers Decoding Layers
extract features from input upsample low-resolution features and merge into single high-resolution output

upsample
layer 5

224×224×32

1×1
conv

Dense
Depth
Map

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C)

224×224×32

1×1
conv

Dense
Depth
Map

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C)

224×224×32

1×1
conv

(b) after shifting skip connections in the decoder

Figure 4-15: Shifting skip connections in the decoder so that they terminate before
interpolation allows us to ensure that nearest-neighbor interpolation is always followed
by a 5×5 convolution; this enables the decomposition of the 5×5 convolution into
smaller 3×3 ones. Additionally, this shift allows us to downsample feature maps from
the encoder prior to them being passed along the skip connection, which contributes
to a reduction in overall feature map data movement.

dense prediction tasks where the output is of similar dimensionality as the input.

FastDepth uses additive skip connections, meaning that feature maps passed along

the skip connection are added to the feature maps at the end of the connection.

In the original FastDepth network, skip connections originate from the second,

fourth, and sixth layers of the MobileNet encoder and terminate at the inputs to the

last three 5×5 convolutions in the decoder. This means that the addition of feature

map values passed via the skip connections takes place right before each of those

convolutions but after the outputs of the previous convolutions have already been

upsampled through nearest-neighbors interpolation. As a result, it is not possible to

group the interpolation and convolution operations such that interpolation directly

precedes convolution. To enable such groupings, it becomes necessary to shift the skip

connections so that they terminate either before interpolation or after convolution.

We find that moving skip connections before interpolation versus after convolution

does not result in any appreciable difference in overall network accuracy. Conceptu-

117

ally, this is reasonable to expect, as the majority of the network structure remains

unchanged, and additive skip connections are still present even if they terminate in

slightly offset locations within the network. We ultimately decide to use skip con-

nections that have been moved before interpolations. Doing so constrains the skip

connections to carry feature maps with heights and widths each reduced by a factor

of 2, since the shapes of the carried feature maps must match the shapes of the inputs

to the interpolation in order for element-wise addition to be valid. This allows fea-

ture maps to be downsampled prior to being passed along the skip connection, which

reduces the total amount of data moved along skip connections by a factor of 4.

The shifted and downsampled skip connections in our modified FastDepth network

are shown in Figure 4-15(b). All dotted boxes now contain decomposable groupings of

nearest-neighbor interpolation and 5×5 convolution operations. Decomposition will

be described in greater detail in the following section.

Decomposing Nearest-Neighbors Interpolation with 5×5 Convolution into

a Set of Smaller 3×3 Convolutions

Some types of interpolation, e.g., zero-insertion and nearest-neighbors interpolation,

produce outputs that are either sparser or more structured than the inputs. Zero-

insertion introduces sparsity from the zeros being inserted between the rows and

columns of input feature map values. Nearest-neighbors interpolation introduces

structure from a pixel value being copied into adjacent pixel locations, resulting in

windows of pixels known to have identical values. Performing a convolution on a

feature map with such sparsity or structure leads to computational patterns or data

reuse that can be exploited.

Suppose that an input feature map is first upsampled through zero-insertion and

then fed into a 5×5 convolution. The upsampled feature map will be 75% sparse.

As the 5×5 convolution kernel is slid across the upsampled feature map, 75% of

the MACs will involve multiplications by zero. This pattern allows the 5×5 kernel

to be decomposed into four smaller kernels that, when convolved with the original

non-upsampled feature map, will yield four distinct output feature maps. These

118

decomposed outputs can be interleaved to produce the same output as the one from

the 5×5 convolution performed after upsampling. Such an approach was explored by

Laina et al. [2] as part of their up-convolution operations; their work found that using

such a decomposition made up-convolution operations more efficient and decreased

training time. Conceptually, this could be attributed to the decomposition resulting

in fewer MACs (due to smaller kernels acting on smaller input feature map sizes)

and lower data movement (since upsampling is avoided). Yazdanbakhsh et al. [122]

also explored a variant of this decomposition in their work on FlexiGAN, where they

used filter and row reordering to make the convolution following zero-insertion more

compact and dense for better hardware resource utilization.

Inspired by these approaches, we are interested in determining whether a decom-

position can be performed when the mode of upsampling is not zero-insertion but

rather nearest-neighbor interpolation. In this case, the interpolation feature map will

have replicated pixel values — every 2×2 window of pixels will have identical values,

which can be thought of as a source of known structure and redundancy in the fea-

ture map. Suppose that this interpolated feature map is fed into a 5×5 convolution,

as shown in Figure 4-16. As the 5×5 kernel (i.e., the filter) is slid across, several

of the MACs will involve multiplying kernel values by the same pixel values. More

precisely, one can visualize 2×2 windows in which kernel values align over a patch of

identical pixel values. Within such windows, instead of performing 4 multiplications

and 4 additions, the kernel values can first be pre-added and then multiplied once

by the pixel value. This takes advantage of redundancy in the pixels and yields a

75% reduction in computation for that window.8 In this manner, the 5×5 filter can

be decomposed into four smaller 3×3 filters that, when convolved with the original

non-interpolated feature map, produce correctly valued interleave-able outputs. Fig-

ure 4-17 indicates that upon interleaving the four individual outputs, the resulting

output feature map will match the one coming from the original 5×5 convolution

performed after nearest-neighbor interpolation.

8Kernel values (i.e., filter weights) can be pre-added prior to inference time, removing the need
to add weights on the fly.

119

11 12 13 14 15

21 22 23 24 25
31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

11 12 13 14 15

21 22 23 24 25
31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

11 12 13 14 15
21 22 23 24 25

31 32 33 34 35

41 42 43 44 45
51 52 53 54 55

11 12 13 14 15
21 22 23 24 25

31 32 33 34 35

41 42 43 44 45
51 52 53 54 55

nearest-neighbor
interpolation

11 12 13 14 15
21 22 23 24 25

31 32 33 34 35

41 42 43 44 45
51 52 53 54 55

Input

Interpolated Input

Kernel

Kernel A Kernel B

Kernel C Kernel D

33

11 12 13 14 15

21 22 23 24 25

31 32 34 35

41 42 43 44 45

51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

*
?

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

C C C C
C C C C
C C C C
C C C C

D D D D
D D D D
D D D D
D D D D

=*

=*

=*

=*

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

output equivalent
to interleaved
outputs from

the four parallel
convolutions

de
co

m
po

si
ng

 o
rig

in
al

 k
er

ne
l in

to
 4

 s
m

al
le

r k
er

ne
ls

4 smaller convolutions

nearest-neighbor
interpolation
+ padding

Input
Kernel

Figure 4-16: Decomposition of a 5×5 kernel into 4 smaller 3×3 kernel. This decompo-
sition is valid when the 5×5 convolution is preceded by nearest-neighbor interpolation.
The red boxes here indicates windows of pixels in the interpolated input feature map
that have identical values. As the 5×5 kernel slides across, kernel values inside the
2×2 windows get multiplied by identical feature map values. instead of performing
4 multiplications and 4 additions, the kernel values can first be pre-added and then
multiplied once by the shared pixel value.

120

nearest-neighbor
interpolation

11 12 13 14 15
21 22 23 24 25

31 32 33 34 35

41 42 43 44 45
51 52 53 54 55

Input

Kernel A

Kernel B

Kernel C

Kernel D

Interpolated Input

Kernel

Output A

Output B

Output C

Output D

Input
Output

interleave
outputs A-D

33

11 12 13 14 15

21 22 23 24 25

31 32 34 35

41 42 43 44 45

51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

*
?

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

C C C C
C C C C
C C C C
C C C C

D D D D
D D D D
D D D D
D D D D

=*

=*

=*

=*

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

output equivalent
to interleaved
outputs from

the four parallel
convolutions

de
co

m
po

si
ng

 o
rig

in
al

 k
er

ne
l in

to
 4

 s
m

al
le

r k
er

ne
ls

4 smaller convolutions

nearest-neighbor
interpolation
+ padding

Input
Kernel

33

11 12 13 14 15

21 22 23 24 25

31 32 34 35

41 42 43 44 45

51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

*
?

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

C C C C
C C C C
C C C C
C C C C

D D D D
D D D D
D D D D
D D D D

=*

=*

=*

=*

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

output equivalent
to interleaved
outputs from

the four parallel
convolutions

de
co

m
po

si
ng

 o
rig

in
al

 k
er

ne
l in

to
 4

 s
m

al
le

r k
er

ne
ls

4 smaller convolutions

nearest-neighbor
interpolation
+ padding

Input
Kernel

33

11 12 13 14 15

21 22 23 24 25

31 32 34 35

41 42 43 44 45

51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

*

?

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

C C C C
C C C C
C C C C
C C C C

D D D D
D D D D
D D D D
D D D D

=*

=*

=*

=*

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

output equivalent
to interleaved
outputs from

the four parallel
convolutions

de
co

m
po

si
ng

 o
rig

in
al

 k
er

ne
l in

to
 4

 s
m

al
le

r k
er

ne
ls

4 smaller convolutions

nearest-neighbor
interpolation
+ padding

Input
Kernel

33

11 12 13 14 15

21 22 23 24 25

31 32 34 35

41 42 43 44 45

51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

*

?

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

C C C C
C C C C
C C C C
C C C C

D D D D
D D D D
D D D D
D D D D

=*

=*

=*

=*

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

output equivalent
to interleaved
outputs from

the four parallel
convolutions

de
co

m
po

si
ng

 o
rig

in
al

 k
er

ne
l in

to
 4

 s
m

al
le

r k
er

ne
ls

4 smaller convolutions

nearest-neighbor
interpolation
+ padding

Input
Kernel

33

11 12 13 14 15

21 22 23 24 25

31 32 34 35

41 42 43 44 45

51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

33

11 12 13 14 15
21 22 23 24 25
31 32 34 35
41 42 43 44 45
51 52 53 54 55

*
?

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

C C C C
C C C C
C C C C
C C C C

D D D D
D D D D
D D D D
D D D D

=*

=*

=*

=*

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

A
C

B
D

output equivalent
to interleaved
outputs from

the four parallel
convolutions

de
co

m
po

si
ng

 o
rig

in
al

 k
er

ne
l in

to
 4

 s
m

al
le

r k
er

ne
ls

4 smaller convolutions

nearest-neighbor
interpolation
+ padding

Input
Kernel

Figure 4-17: After filter decomposition, each of the four smaller 3×3 filters can be
convolved with the non-interpolated input feature map. This produces four outputs
that can be interleaved. The resulting output feature map with match the one coming
from the original 5×5 convolution performed after nearest-neighbor interpolation.

121

In the original FastDepth network, we design each decoding layer so that in-

terpolation happens after convolution. This reduces the number MACs by a fac-

tor of 4× for each of the decoding layers, when compared to decoders in existing

cited encoder-decoder models [2]. Now, in the modified FastDepth network, we have

nearest-neighbor interpolation in layer 𝐿 directly followed by the 5×5 convolution

in layer 𝐿 + 1. We can decompose this set of operations into four 3×3 convolutions

and remove the interpolation function, thereby reducing the number of MACs in each

decoding layer even further by a factor of 2.8×.9

Replacing 5×5 Convolution with Cascaded 3×3 Convolutions

The decomposition described above is applicable to all but one of the 5×5 convolution

in the FastDepth decoder. The remaining 5×5 convolution in question is the one in

the first decoding layer. This layer interfaces directly with the output of the encoder,

and there is no interpolation preceding the 5×5 convolution. Keeping this layer as is

would result in inefficiencies when mapping it onto our 3×3 convolutional accelerator;

e.g., we would first need to map the initial 3 rows of the 5×5 convolution, followed

by a second pass for the remaining 2 rows — resulting in a 50% utilization hit for 1/3

of the PEs in the array left idle during this second pass. Furthermore, adding control

logic for when and how to support this partitioned 5×5 convolution would further

complicate and increase the size of every individual PE. As such, alternate ways of

handling the 5×5 convolution need to be considered.

One way is to break apart the 5×5 convolution into a series of 3×3 convolutions,

as described by Du et al. in [123]. In this approach, the 5×5 kernel is first zero-

padded to create a 6×6 kernel that is then broken up into four smaller 3×3 kernels.

This decomposition differs from the one enabled by a preceding nearest-neighbor

interpolation in two ways:

1. In the decomposition enabled by nearest-neighbor interpolation, decomposed

3×3 kernels convolve with a feature map that is smaller than the feature map
9Compare 5×5 = 25 MACs for each pixel in a single channel with the original 5×5 convolution

to 4×(3×3× 1
4) = 9 MACs after decomposition into four 3×3 convolutions.

122

in the original 5×5 convolution. This is not applicable in the decomposition

considered here, as there is no interpolation present. Here, the four decomposed

3×3 kernels each convolve with a feature map that is the same size as the feature

map in the original 5×5 convolution. Thus, there is no reduction in MACs; on

the contrary, unless the extra MACs containing multiplies by zero (due to the

kernel padding) are gated or skipped, there will be an increase in total MACs.

2. In the decomposition enabled by nearest-neighbor interpolation, decomposed

outputs can be recombined by simple interleaving of rows and columns; this

does not involve any extra computation and can be done at the datapath level.

In the decomposition considered here, however, recombination of decomposed

outputs is more complex. The four outputs need to be overlaid such that they

are shifted relative to one another, and then added element-wise. This not only

requires extra logic for overlay and addition but also necessitates that all four

decomposed outputs be cached on-chip at once.

The computation and storage cost overhead of supporting such a decomposition

makes it less ideal of a choice. Another way of handling the standalone 5×5 convolu-

tion is by replacing it altogether with a set of 3×3 convolutions. Figure 4-18 shows

how two 3×3 convolutions will yield the same receptive field as a 5×5 convolution.

Receptive field refers to the window of the input that is visible to an element of a

filter. This means that each element in the output of the cascaded 3×3 convolutions

will depend on just as many input values as each element in the output of a single

5×5 convolution would have depended on. This idea was explored in VGGNet [46].

We focus on maintaining the receptive field of the first decoding layer as doing

so helps maintain the receptive field of the whole decoder; this makes it less likely

for our network modification to result in accuracy loss. However, this comes at the

cost of increased parameter count and MACs due to the additional convolutions that

are introduced. Recall that in depthwise separable layers, the pointwise convolution

contributes more parameters and more MACs than the depthwise convolution. When

replacing a single 5×5 depthwise layer with two cascaded 3×3 depthwise layers, we

123

Receptive Field

Input First 3x3
Convolution

Second 3x3
Convolution

Figure 4-18: Receptive field refers to the window of the input that is visible to an
element of a filter in a convolution (shown here by the dashed squares). The receptive
field of two cascaded 3×3 convolutions matches that of a single 5×5 convolution.

introduce an extra depthwise and pointwise convolution, the latter of which can drive

the number of weights and MACs up. This differs from the VGGNet that used

standard convolutional layers. For instance, consider a standard convolutional layer

with 5×5×𝐶×𝑀 filters. These can be replaced with two 3×3×𝐶×𝑀 filters, resulting

in a reduction of 5×5×𝐶×𝑀
2×3×3×𝐶×𝑀

= 1.4×. Now, consider a depthwise separable layer

with 5×5×1×𝐶 depthwise filters and 1×1×𝐶×𝑀 pointwise filters. If we replace

this with two depthwise separable layers, each with 3×3×1×𝐶 depthwise filters and

1×1×𝐶×𝑀 pointwise filters, there is a net overhead of 5×5×1×𝐶+1×1×𝐶×𝑀
2×(3×3×1×𝐶+1×1×𝐶×𝑀)

. While

there is still a 1.4× reduction in depthwise parameters and MACs, it is offset by the

2× increase in pointwise parameters and MACs. It may be possible to decrease 𝐶

and 𝑀 in the cascaded 3×3 depthwise separable layers in order to lower the this

overhead (at a potential cost of accuracy); however, we did not experiment with that.

We instead reason that the decomposition of subsequent 5×5 layers in the decoder,

as described earlier in this section, will lead to a reduction in MACs there, thus

mitigating the overall change in MACs due to the overhead incurred here.

Impact of DNN Modifications

Figure 4-19 shows the topology of the FastDepth DNN after the aforementioned mod-

ifications are applied. We retrain the modified network using the same experimental

settings as described in Section 2.3. We also reapply the NetAdapt pruning algorithm

to the retrained network and select the pruning iteration that results in a model with

124

the lowest accuracy degradation and a MACs count most closely equal to that in the

original pruned FastDepth DNN.

Dense
Depth
Map

upsample
layer 2

upsample
layer 3

upsample
layer 4

upsample
layer 1

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C) Encoding Layers Decoding Layers
extract features from input upsample low-resolution features and merge into single high-resolution output

upsample
layer 5

224×224×32

1×1
conv

Dense
Depth
Map

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C)

224×224×32

1×1
conv

Dense
Depth
Map

MobileNet 7×7×1024 14×14×512 28×28×256 56×56×128 112×112×64
224×224×1224×224×3

(H×W×C)

224×224×32

1×1
conv

Figure 4-19: Accelerator-friendly FastDepth DNN topology. The two key modifica-
tions are in the decoder: (1) shifting skip connections to terminate before nearest-
neighbor interpolation and downsampling feature maps passed along the connections,
and (2) replacing the first 5×5 convolution with a cascade of two 3×3 convolutions.

Due to this retraining and repruning process, the channel dimensions in hidden

layers change. Figure 4-20 compares the shape of the original FastDepth and the

modified accelerator-friendly FastDepth. The shaded area represents the original

topology of both networks prior to pruning. The topologies are very similar with the

single major difference being a wider bottleneck in the accelerator-friendly network;

this is due to our expansion of the first decoding layer with a 5×5 convolution into

two cascaded layers with 3×3 convolutions. The blue and yellow columns represent

encoder and decoder layer shapes after channel pruning. A key observation is that

to compensate for an extra layer with a large channel dimension in the bottleneck

region of the modified network, several other layers get pruned more.

Table 4.4 summarizes the impact of the model modifications we make in the

accelerator-friendly FastDepth network. The number of MACs, the 𝛿1 accuracy, and

the RMSE all remain similar. The number of weights in the DNN increases by about

28% — this is largely due to both having extra decoding layer for cascaded 3×3

convolutions as well as having larger channel dimensions in some layers after pruning.

However, the expected number of memory accesses for feature maps is lower for the

modified network. Sources of reduction include: (1) the downsampling of feature

maps passed along skip connections, which reduces reads and writes done for these

feature maps, and (2) the decomposition of interpolated 5×5 convolutions into non-

interpolated 3×3 convolutions, which removes the interpolation operation and reduces

the feature map sizes being read in from memory.

125

N

um
be

r o
f I

np
ut

 C
ha

nn
el

s

0

128

256

384

512

640

768

896

1024

mobile
net.1

mobile
net.2

mobile
net.3

mobile
net.4

mobile
net.5

mobile
net.6

mobile
net.7

mobile
net.8

mobile
net.9

mobile
net.1

0

mobile
net.1

1

mobile
net.1

2

mobile
net.1

3

deco
der.1

deco
der.2

deco
der.3

deco
der.4

deco
der.5

deco
der.6

(a) original FastDepth network topology

mobilenet.1mobilenet.2mobilenet.3mobilenet.4mobilenet.5mobilenet.6mobilenet.7mobilenet.8mobilenet.9mobilenet.10mobilenet.11mobilenet.12mobilenet.13decoder.1decoder.2decoder.3decoder.4decoder.5decoder.6decoder.7
unpruned32 64 128 128 256 256 512 512 512 512 512 512 1024 1024 1024 512 256 128 64 32
pruned (highest accuracy -- iteration 52)16 64 88 80 176 256 400 384 304 328 336 384 528 520 392 240 256 80 64 24

(b) modified FastDepth network topology

Figure 4-20: Comparing FastDepth network topologies after channel pruning with
NetAdapt [4]. Figures show the number of input channels to each layer in the network.
The shaded part represents the topology before pruning. The very first layer to the
network (mobilenet.0) is not shown since the channel size of the input fed into the
network remains fixed at 3 channels (RGB). Overall, the shapes of the two topologies
look similar. The modified network contains an extra layer at the beginning of its
decoder; to compensate for this, several other layers get pruned more.

126

Metric Original DNN
(32b float)

Modified DNN
(32b float)

Quantized DNN
(8b-10b int)

Weights [106] 1.34 1.71 1.71
MACs [109] 0.37 0.38 0.38

Accuracy (𝛿1 [%]) 77.1 77.2 77.0
RMSE [cm] 60.4 59.5 59.5

Skip Connection R/W 10.4 MB 2.4 MB 0.6 MB
Input and Output R/W 27.2 MB 24.8 MB 6.2 MB
Total Feature Map R/W 37.6 MB 27.2 MB 6.8 MB

Weights R/W 5.4 MB 6.8 MB 2.2 MB
Total Data R/W 43 MB 34 MB 9 MB

Table 4.4: Impact of FastDepth network modifications on accuracy and data move-
ment (reads and writes to off-chip DRAM). Compared to the original DNN, our mod-
ified accelerator-friendly DNN achieves equivalent accuracy with a 21% reduction in
DRAM accesses. Quantization to 8-bit activations and 10-bit weights results in an
additional 75% reduction in data movement, with negligible degradation of accuracy.

4.4.2 Integer Quantization

As first discussed in Section 1.2.4, quantization refers to the reduction of bitwidths

used to represent weights and activations of a neural network. This bitwidth reduction

translates to reductions in data movement (fewer bits need to be transferred), in

storage cost (fewer bits need to be stored), and in compute time and energy per MAC

(fewer bits need to be multiplied and accumulated, allowing for smaller arithmetic

blocks to be used). However, reduced bitwidth — also termed as reduced precision —

effectively limits how many unique values a weight or activation can take on. This has

implications on network accuracy. For example, when comparing a quantized model

against an original non-quantized model, reduced precision will limit how well the

quantized model can approximate the non-quantized model, which will translate to

accuracy degradation. Hence, the tradeoff between reducing precision and incurring

accuracy loss is a significant design consideration when quantizing neural networks.

Quantization for image classification networks has been extensively explored, with

reasonably high post-quantization network accuracy being achieved with 2-bit and 1-

bit quantization [66–69]. Successful quantization with such low bitwidths is partly due

to the relatively simple nature of the image classification task, where the output is 1D

127

(a vector of class label predictions). Conceptually, while the quantization of activation

values to lower bitwidths may be more lossy, as long as the output class label ordering

remains similar, the overall network accuracy will not degrade significantly.

The same cannot be said for networks that perform dense prediction tasks; such

networks produce outputs that are multidimensional feature maps where individual

pixel values have meaning (e.g., in depth estimation networks, each pixel in the out-

put feature map corresponds to a predicted depth measurement). If feature map

activations and filter weights in the network are quantized at inference-time, the out-

put feature map will need to be de-quantized for output pixels to preserve meaning

(e.g., for a depth estimation network, an output feature map value that is a quantized

integer needs to be de-quantized into a floating point value representing a depth mea-

surement in specific units). This suggests that quantization impacts output values

and overall accuracy more directly for dense prediction networks.

When training and evaluating FastDepth in PyTorch, we use 32-bit floating-point

precision for all tensors (i.e., weights, biases, and activations). When quantizing the

network for deployment onto an FPGA, we target 8-bit integer precision for weights

and activations.10 Since every hidden layer in FastDepth is preceded by a ReLU

activation function that zeroes out negative values, activations will always be greater

than or equal to zero; we therefore represent activations with 8-bit unsigned values.

Weights, however, can be positive or negative and thus are represented with 8-bit

signed values. We do not target a particular bitwidth for biases, since there are

relatively few of them per layer, and they do not add significantly to compute or

data movement. We ultimately use 32-bit signed integer precision for biases; this bias

precision is informed by our quantization methodology.

Quantization Methodology — Introduction

Quantizing a set of values can be interpreted as mapping the range of those values

to a target number of levels. For example, 8-bit unsigned precision corresponds to

256 target levels (ranging in value from 0 to 255). If we were to quantize a set of

10Several weight values will need to be 10 bits, as explained at the end of this section.

128

values ranging from 0 to 0.5 to this precision, we would divide the range of 0.5 into

256 subranges and map each subrange to a level (e.g. values between 0.498 and 0.5

would correspond to a quantized value of 255).

An alternative interpretation of quantization is determining a numerical factor

that, when multiplied with the values to be quantized and potentially rounded, results

in values of the desired precision. In the example described above, this factor — the

quantization factor — would be 255/0.5 = 510. In this case, 0.498-0.499 would

correspond to a quantized value of 254, while 0.499-0.5 would correspond to 255.

Since this approach involves multiplication by a fixed factor, it lends itself better to a

hardware-friendly implementation; the quantization factor can be constrained to be

a power of two for efficient bit shift-based multiplication. This approach forms the

basis of our quantization methodology.

Tensor-wise vs. Channel-wise Quantization

A key design consideration when quantizing FastDepth weights and activations is

whether to quantize over an entire tensor or over a slice of the tensor along a specific

dimension. The range of values in a particular tensor slice is likely to be smaller than

the range of values across the entire tensor; this makes quantization over a tensor slice

more fine-grained, which reduces accuracy degradation due to quantization. However,

such a quantization scheme requires an implementation that is more adaptive and can

signal unique quantization factors for every tensor slice.

In our experiments, weights appear to be the datatype more sensitive to quantiza-

tion; this is reasonable to expect, as each individual weight value is used far more often

than any individual activation value when computing MACs in a layer. We find that

tensor-wise quantization of weights lowers network accuracy to sub-1% and therefore

use channel-wise quantization instead, where every output channel of the weight ten-

sor is quantized separately. This is consistent with observations made in [124]. For

activations, we use tensor-wise quantization. Applying this quantization scheme to

each layer in FastDepth results in less than 1% overall accuracy loss when compared

to the unquantized network. We do not perform any retraining after quantization.

129

Quantization Methodology — Walkthrough

We now explain our quantization methodology more formulaically. In developing

this methodology, we reference [64, 124] and draw inspiration from the quantization

algorithms in the Neural Network Distiller [125]. The equations describing quanti-

zation of weights and activations are given in equations 4.1a and 4.1b. 𝑄𝑎 and 𝑄𝑤

are quantization factors for activations and weights, respectively. We use tensor-wise

quantization for activations, so 𝑄𝑎 is a single-element vector. It differs from layer

to layer and is determined prior to inference-time based on an average of activation

ranges over a select validation set. We use channel-wise quantization for weights, so

𝑄𝑤 is a vector of 𝐶 elements, where 𝐶 equals the number of output channels in the

weight tensor. This vector also differs from layer to layer and is based on channel-wise

ranges in model weights (that are known and fixed post-training).

activation8b-int = 𝑄𝑎 × activation32b-fp (4.1a)

weight8b-int = 𝑄𝑤 × weight32b-fp (4.1b)

The products of these quantized weights and activations will be accumulated until

MACs for a given layer are done. The resulting values will need to be added with a

bias before passing through a ReLU activation function to complete the computation

of the layer. Without quantization, we would have:

output32b-fp =
[︁∑︁

activation32b-fp × weight32b-fp

]︁
+ bias32b-fp (4.2)

We need to maintain this expression when quantizing values. This means that

when multiplying activations and weights by their respective quantization factors, we

also need to multiply the bias by the product of those quantization factors:

130

𝑄𝑎 ×𝑄𝑤 × output32b-fp =
[︁∑︁

(𝑄𝑎 × activation32b-fp)× (𝑄𝑤 × weight32b-fp)
]︁

+𝑄𝑎 ×𝑄𝑤 × bias32b-fp

(4.3)

Empirically, we find the product (𝑄𝑎×𝑄𝑤×bias32b-fp) to produce values less than

232 − 1. These values can be rounded to yield 32-bit integers. We therefore have the

following calculation for an integer bias to be used in our quantization scheme:

bias32b-int = 𝑄𝑎 ×𝑄𝑤 × bias32b-fp (4.4)

Substituting into equation 4.3, we now have:

𝑄𝑎 ×𝑄𝑤 × output32b-fp =
[︁∑︁

activation8b-int × weight8b-int

]︁
+ bias32b-int

= output32b-int

(4.5)

The right-hand side expression corresponds to the 32-bit integer-valued output

feature map computed by the accelerator for a certain layer, say layer 𝐿. If this is

the final layer in the network and we wish to obtain the de-quantized output feature

map, we simply divide the output feature map by 𝑄𝑎 ×𝑄𝑤 for that layer:

output32b-fp for layer 𝐿 =
output32b-int for layer 𝐿

𝑄𝑎(𝐿)×𝑄𝑤(𝐿)
(4.6)

However, if this layer is followed by some layer 𝐿+ 1, there is an additional step,

since the output from layer 𝐿 will be fed as an input to layer 𝐿+ 1. We need to first

de-quantize the output feature map using quantization factors for layer 𝐿, and then

quantize the resulting activations using 𝑄𝑎 for layer 𝐿+ 1.

activation8b-int for layer 𝐿+ 1 =
output32b-int for layer 𝐿

𝑄𝑎(𝐿)×𝑄𝑤(𝐿)
×𝑄𝑎(𝐿+ 1)

= output32b-int for layer 𝐿× 𝑄𝑎(𝐿+ 1)

𝑄𝑎(𝐿)×𝑄𝑤(𝐿)

(4.7)

131

The expression 𝑄𝑎(𝐿+1)
𝑄𝑎(𝐿)×𝑄𝑤(𝐿)

represents the intermediate quantization factor be-

tween hidden layers in the network. It is a vector of 𝐶 elements, where 𝐶 is the

number of channels in the activation between the layers. Since the 𝑄𝑎 and 𝑄𝑤 factors

for all layers are known at inference-time, these intermediate quantization factors can

be precomputed and read in alongside weights and biases.

Hardware-friendly Quantization Factors Our quantization scheme is designed

to be performed on the accelerator on-the-fly as output feature map values stream

from the compute core. Multiplying streaming outputs by quantization factors can

become area-costly as well as a computational bottleneck if additional multipliers are

used, especially since these factors can be large integer values. Hence, we constrain

the quantization factors 𝑄𝑎 and 𝑄𝑤 to be powers of 2. This simplifies multiplications

to efficient bit-shit operations. We find that this constraint still allows us to success-

fully quantize all layers while maintaining network accuracy. Furthermore, instead of

loading, storing, and passing around large quantization factors on-chip, we can simply

use the correponding smaller bit-shift values instead.

Handling Decomposed Weights As discussed in Section 4.4.1, several of the

FastDepth layers with 5×5 convolutions will be decomposed when being mapped

onto the FPGA-based accelerator. This decomposition creates four 3×3 kernels from

the 5×5 kernel by pre-adding values within 2×2 windows. Since the values in the

5×5 kernel are initially quantized to 8 bits, the values in each of the decomposed

3×3 kernels will be sums of four 8-bit values. To avoid overflow, these decomposed

kernels must be allocated 10 bits per value. Hence, all datapaths and buffers in our

FastDepth accelerator assume that incoming weights have a bitwidth of 10.

132

4.5 Mapping FastDepth onto the Accelerator

4.5.1 Tiling Feature Maps

Accelerators typically have limited onboard compute and storage resources, meaning

that there is a limit to the size of an input that can be processed at once. The

FastDepth accelerator is designed to handle feature maps that are 7×7×𝐶 in shape,

where 𝐶 is the number of input feature map channels. The largest 𝐶 supported by

the on-chip buffers exceeds 520, the largest channel dimension in the FastDepth DNN.

The feature maps involved in most FastDepth layers are larger than 7×7 in the

height and width dimensions. For them to be processed within the accelerator, they

are first partitioned into a set of 7×7×𝐶 feature map chunks; this set of chunks

(referred to as tiles) is then iterated through to cover the entire larger feature map.

The motivation to select 7 as the tile height and tile width comes from the obser-

vation that all feature maps within the FastDepth network have dimensions divisible

by 7. In other words, the tile size is chosen to be the greatest common factor of fea-

ture map sizes. When bringing in feature maps on-chip for computation, we do not

tile along the channel dimension, as this would unnecessarily complicate channel-wise

aggregation during pointwise convolutions. Our design prioritizes the ability to bring

in all channels necessary for complete computation of both depthwise and pointwise

convolution over a single tile at a time, with the major limiting factor here being

on-chip storage. If our selected tile size multiplied by the largest channel dimension

had been too large for on-chip storage, the tile size would have been made smaller.

Padding the Input Feature Map Tiles

A convolution with a kernel size greater than 1 will result in reduced dimensions in

the output feature map, unless the input feature map is padded prior to convolution.

As illustrated in Figure 4-21, for feature map sizes to be preserved during 3×3 convo-

lution, the height and width of the input feature map must be padded with a single

row or column of elements on each side. Therefore, since the FastDepth accelerator

computes tiles of shape 𝑃𝑇 × 𝑄𝑇 × 𝐶 with 𝑃𝑇 = 𝑄𝑇 = 7, the input tiles to the

133

Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4 ⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

Figure 4-21: For feature map sizes to be preserved during 3×3 convolution, the height
and width of the input feature map must be padded with a single row or column of
elements on each side. Here, the input feature map is shown in blue, the kernel is
shown in grey, and the output feature map is shown in teal. Figure taken from [5].

accelerator must be of shape 𝐻𝑇 ×𝑊𝑇 × 𝐶 with 𝐻𝑇 = 𝑊𝑇 = 9.

Padding is closely intertwined with the tiling process described above — an input

feature map of shape 𝐻×𝑊×𝐶 must first be padded (with zeros) to a shape of

(𝐻+2)×(𝑊+2)×𝐶 and then tiled along the height and width dimension to produce

9×9×𝐶 tiles. This padding and tiling process is depicted in Figure 4-22.

Suppose that we have an input feature map of shape 14×14×𝐶. This feature map

is first padded to a shape of 16×16×𝐶 and then tiled into four tiles, each of shape

9×9×𝐶. Note that tiling here does not produce tiles of shape 8×8×𝐶, as would

have been expected if one were to simply partition the padded feature map into

four distinct chunks. Such partitioning, however, will not work well with the sliding

nature of convolutions, and will introduce inter-tile dependencies, called halos, along

tile edges [96]. To handle these halos, the tiles are made slightly larger — in our case,

by overlapping with one column and one row of an adjacent tile. These overlapping

regions are marked with a diagonal pattern in Figure 4-22.

Padding and tiling does not involve computation and is largely a memory-bound

task that requires reorganization of how a feature map is stored in memory. In our

current design, we offload the padding and tiling of feature maps to off-chip processing.

134

Padding Tiling

Padding & Tiling

C C
C

14

14

16

16

9

9

Figure 4-22: Padding and tiling input feature maps for 3×3 convolutions. In the
FastDepth accelerator, the output feature map tile height and width are set to be
7×7, meaning that input feature map tiles must have a height and width of 9×9.
This figure illustrates an example of how a 14×14×𝐶 input feature map is padded
and then tiled into four 9×9×𝐶 tiles. Overlapping regions (called halos) amongst
adjacent tiles are depicted with a diagonal pattern.

4.5.2 Mapping FastDepth Layers

This section summarizes the various layer types present in our modified accelerator-

friendly FastDepth DNN, as well as how the FastDepth accelerator supports them.

Depthwise Separable Layers with 3×3 Convolutions and Stride of 1

These convolutions are prevalent throughout the FastDepth network: they are found

in the MobileNet encoder as well as in the first two layers of the decoder. These

convolutions are natively supported by our dataflow and accelerator design, described

extensively throughout Sections 4.2 and 4.3, respectively.

Depthwise Separable Layers with 3×3 Convolutions and Stride of 2

These convolutions are interspersed throughout the MobileNet encoder where they

gradually reduce the spatial (height and width) of intermediate feature maps. The

primary difference between supporting a stride of 2 versus a stride of 1 is that more

input feature map data needs to be read in for the same-sized output tile to be

computed. Our accelerator supports this by offering enough on-chip buffer storage to

cache up to four input feature map tiles that, with striding by 2, would yield a single

output feature map tile. This is discussed in greater detail in Section 4.3.2.

135

Decomposable 5×5 Depthwise Separable Layers

These layers exhibit a specific structure: they consist of 5×5 convolutions that im-

mediately follow nearest-neighbor interpolation. Such layers make up the majority

of the FastDepth decoder. We handle these by observing that the interpolation with

5×5 convolution can be grouped and decomposed into four smaller 3×3 convolutions.

The latter are then natively supported by our accelerator. This decomposition is

explained in Section 4.4.1.

Interleaving of Decomposed Outputs

Each of the four 3×3 convolutions resulting from the decomposition mentioned above

generate a distinct output feature map. These need to be interleaved to produce

a valid input for the subsequent layer in the network. We aim to add interleaving

capability within the accelerator to avoid performing this off-chip. We note that

interleaving requires handling all four feature maps at once; this is in fact similar

to bringing in four feature map tiles for convolutions with a stride of 2. Hence, we

reuse the buffering and tile alignment logic that is described in Section 4.3.2. This

completes our handling of decomposable 5×5 depthwise separable layers.

Additive Skip Connections

The skip connections present in FastDepth all terminate at decomposable 5×5 depth-

wise separable layers. They need to be added after the decomposed outputs are inter-

leaved. Our accelerator supports this in a straightforward manner, bringing residual

feature map tiles on-chip in alongside the feature map tiles being interleaved; addition

then takes place on a row-by-row tile-by-tile basis, as described in Section 4.3.2.

Standalone Pointwise Layers

The last layer in the FastDepth networks consists solely of a pointwise convolution,

i.e., there is no depthwise convolution preceding it. The purpose of this layer is

to perform channel-wise aggregation at the end of the network to produce a single-

136

channel depth map output. Our FastDepth accelerator can easily support this layer by

first performing an identity depthwise convolution (with an identity kernel). However,

this does add some computation overhead as the input feature map to this layer has

high height and width dimensionality, meaning it involves processing a large number

of tiles. We observe that although this last layer computes just 1% of all MACs in the

network, it accounts for around 3% of total network runtime in our implementation.

Standard Non-Depthwise-Separable Layers

The first layer in the FastDepth network cannot be expressed as a depthwise separable

layer. This layer consists of a standard 3×3 convolution with 3 input channels and 16

output channels. As this type of layer is not natively supported by the accelerator,

we consider two ways of handling it: (1) offloading the entire layer computation to

off-chip, e.g. on a CPU/GPU, or (2) representing this layer via a pseudo-depthwise-

separable operation. The first option is less desirable as it involves off-chip compute

that may introduce scheduling delays, e.g. if the CPU/GPU are switching between

other tasks in a system. We therefore implement the latter option — by replicating

the 3-channel input 16 times, we can compute the 48 intermediate feature maps and

aggregate them as part of a pseudo-depthwise operation. Afterwards, an identity

pointwise operation can be applied to yield the correct 16-channel output from the

layer. This requires adding a control flag for the first layer in our depthwise convo-

lution logic but otherwise makes use of our existing dataflow and accelerator design.

However, the expanded input channel dimension and a non-optimal mapping of this

layer type results in inefficient use of the accelerator, which incurs a runtime over-

head. We observe that this initial layer is the slowest and accounts for around 10%

of the entire network runtime in our implementation.

4.5.3 Utilization of the PE Array

The PE array that forms the compute core of our FastDepth accelerator design is

described in detail in Section 4.3.1. This section discusses utilization of that PE

137

array, namely how many — and how often — PEs in the array are active during

runtime. We first analyse spatial utilization, then temporal utilization, and finally

combine the two to obtain an overall PE array utilization rate.

Spatial Utilization of PEs

In our analysis, spatial utilization refers to how many of the PEs within the array

are active during runtime. This is one measure of how well individual layers in the

FastDepth network map onto our accelerator design. This mapping is influenced by

(1) the PE array size (e.g., how many rows or blocks of PEs there are), and (2) layer

shapes (e.g., how many input or output channels are computed within a layer).

The PE array in the FastDepth accelerator is designed to work on multiple chan-

nels in parallel. As described in Section 4.3.1, channel-wise parallelism served as moti-

vation for building up the array via PE blocks for depthwise computation. Specifically,

each PE block is meant to work on a single input channel at a time. For an array

that consists of 𝐵 blocks, 𝐵 input channels can be processed at once. This means

that during depthwise convolution, sets of 𝐵 input channels are iterated through un-

til computation for all channels is complete — the total number of passes through

the array can thus be expressed as ⌈𝐶/𝐵⌉, where 𝐶 refers to the number of input

channels in the layer. If 𝐶 is divisible by 𝐵, then the depthwise convolution in that

layer can map onto the array with perfect spatial utilization, since all PE blocks will

be used. If, however, 𝐶 not divisible by 𝐵, then the final pass will only use 𝐶 mod 𝐵

blocks; the remaining blocks will be idle for that last pass. From this we can estimate

spatial utilization for depthwise convolutions using the following equation:

spatial utilDW =

⎧⎪⎨⎪⎩100%, if 𝐶 mod 𝐵 = 0

100%×
(︁

⌈𝐶/𝐵⌉−1
⌈𝐶/𝐵⌉ + 𝐶 mod 𝐵

𝐵
× 1

⌈𝐶/𝐵⌉

)︁
, otherwise

(4.8)

where ⌈𝐶/𝐵⌉−1
⌈𝐶/𝐵⌉ refers to the number of passes in which all PE blocks are active,

1
⌈𝐶/𝐵⌉ refers to the final pass, and 𝐶 mod 𝐵

𝐵
refers to the fraction of PE blocks active

138

on that final pass. This equation is to be applied on a per-layer basis as 𝐶 will

change from layer to layer. 𝐵 is fixed to be 8 in our PE array design. Figure 4-23

visualizes spatial utilization rates for every layer in FastDepth. Since input channel

dimensions in all layers are perfectly divisible by 𝐵 = 8, the utilization rate for

depthwise convolution is 100% across all layers.

Spatial utilization for pointwise convolutions can be calculated in a similar way.

Instead of considering input channels, we now consider the number of output channels,

𝑀 . In the PE array, each of the 𝐵 blocks consists of 3 rows of PEs, and each of

those rows works on a distinct output channel. Analogous to how we map 𝐶 input

channels onto 𝐵 blocks, we now map 𝑀 output channels onto 3𝐵 rows. This yields

an analogous equation to compute spatial utilization for pointwise convolutions:

spatial utilPW =

⎧⎪⎨⎪⎩100%, if 𝑀 mod 3𝐵 = 0

100%×
(︁

⌈𝑀/3𝐵⌉−1
⌈𝑀/3𝐵⌉ + 𝑀 mod 3𝐵

3𝐵
× 1

⌈𝑀/3𝐵⌉

)︁
, otherwise

(4.9)

Not all output channel dimensions in FastDepth layers are perfectly divisible by

3𝐵 = 24, resulting in several layers with < 100% utilization. Larger 𝑜𝐶 correspond

to more passes through the array during pointwise convolution, which mitigates the

utilization hit of inactive PEs on the final pass. Hence, utilization percentage rates

for layers in the middle of the network tend to be in the high 90s. The most inefficient

layer is the last decoding layer as it produces a single output channel and therefore

uses just one of the 24 rows throughout the duration of that pointwise convolution.

This utilization analysis so far focused on spatial parameters such as array size

and layer shape. It has not taken into account any temporal statistics, e.g., how long

depthwise convolutions take relative to pointwise convolutions, or how long each layer

takes relative to the others. Those statistics factor into temporal utilization.

139

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FastDepth Layer Index

Depthwise Spatial Utilization Pointwise Spatial Utilization

Figure 4-23: Layer-by-layer spatial utilization of the PE array. Our accelerator
achieves high spatial utilization for almost all FastDepth layers. The only signifi-
cant exception is the final layer that produces just a single output channel.

Temporal Utilization of PEs

Whereas spatial utilization estimates how many PEs are active, temporal utilization

estimates how often PEs are active. One straightforward approach to computing this

is by counting clock cycles when PEs are active and dividing those by the total cycle

count for depthwise or pointwise computation:

temporal utilDW =
clock cycles when PEs are active

clock cycles for depthwise convolution
(4.10)

temporal utilPW =
clock cycles when PEs are active

clock cycles for pointwise convolution
(4.11)

Figure 4-24 visualizes temporal utilization rates for every layer in FastDepth. Sub-

100% utilization is due to PE idleness during data read-out and read-in.11 During

depthwise computation, idleness occurs if more time is needed for input feature map

GLBs to fill up. During pointwise computation, idleness occurs if more time is needed

for output feature map buffers to be fully read out. Challenges in hiding memory

latency and reducing idleness are further discussed in Section 4.6.5.

11Some, but not all, of this memory latency is hidden through data pre-fetching or pre-loading.

140

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FastDepth Layer Index

Depthwise Temporal Utilization Pointwise Temporal Utilization

Figure 4-24: Layer-by-layer temporal utilization of the PE array. There are two
sources of temporal utilization hits: PE idleness while feature map GLBs are filled up
with data from DRAM (this impacts depthwise temporal utilization) and PE idleness
while output feature maps are written out to DRAM (this impacts pointwise temporal
utilization). Since there is far less depthwise computation in FastDepth than there is
pointwise computation, the depthwise temporal utilization hit is far more noticeable.

Overall Utilization

The spatial and temporal utilization rates analysed above can be combined to deter-

mine a more comprehensive utilization rate for the depthwise and pointwise convolu-

tions in each individual layer:

utilDW = spatial utilDW × temporal utilDW (4.12)

utilPW = spatial utilPW × temporal utilPW (4.13)

The layer utilization rate is then a weighted sum of these two utilizations, with

the weighing factor being the fraction of clock cycles spent on depthwise vs. pointwise

convolution within a layer:

layer utilization =
clock cyclesDW

cycles for layer
× utilDW +

clock cyclesPW

cycles for layer
× utilPW (4.14)

Layer utilization rates can be aggregated over all layers, where the weighing factor

is fraction of the network that each layer constitutes time-wise. This yields an effective

utilization rate for the network as a whole:

141

network utilization =
∑︁
layers

clock cycles for layer
clock cycles for network

× layer utilization (4.15)

This yields an overall PE array utilization rate of 46.1%. In our discussion of

mapping FastDepth layers in Section 4.5.2, we establish that the first layer and final

layer of the network do not map well onto our accelerator design. If we remove

these two layers from consideration, we obtain an overall PE array utilization rate

of 50.2%. Hence, the utilization hit from these two layers is not overly significant;

this is reasonable to expect since they account for only a small fraction of the entire

network. Instead, the primary utilization hit comes from idleness during on-chip

memory read-in and read-out (i.e., when filling up GLBs with inputs from DRAM,

or emptying out PE block-level buffers by sending outputs to DRAM). As mentioned

earlier, this causes a noticeable temporal utilization hit, which then factors into the

overall utilization rate.

4.6 Implementation Results

When implementing our accelerator design, we target deployment on an embedded

FPGA. We select the Ultra96 development board [118] for its small form factor,

low power consumption, and easy interfacing through the on-board ARM processor

running Linux. We use Xilinx’s Vivado Design Suite 2018.1 for all accelerator logic

simulation, synthesis, and implementation.

4.6.1 System Overview

Our target platform — the Ultra96 board — has an ARM-based Zynq UltraScale+

MPSoC. This MPSoc incorporates a Processing System (PS) unit that runs a Linux

kernel and a Programmable Logic (PL) unit that runs user logic designs. Our system

for FastDepth inference uses both the PS and the PL: while our accelerator logic is

implemented on the PL, our I/O to the accelerator is handled by the PS. We make

142

LUT LUTRAM FF BRAM (36K) DSP
Available 70560 28800 141120 216 360

Accelerator Logic 54691 8656 32004 205 353
AXI Stream FIFOs 130 24 211 0.5 0

AXI DMA 1527 121 2054 2 0
AXI Misc. 5216 796 6226 0 0

Zynq PS Reset 19 1 37 0 0
Total Used 61583 9598 40532 207.5 353

(Utilization %) (87%) (33%) (29%) (96%) (98%)

Table 4.5: Logic utilization of the accelerator deployed on the Ultra96 FPGA.

use of the PYNQ API [120] to interface with DMA to off-chip DRAM and with GPIO

communicating control signals directly to/from our accelerator. Additionally, while

all FastDepth layers run on the accelerator on the PL, feature map transforms (for

padding and tiling) between layers takes place on the CPU in the PS.

Logic Utilization

Our design is inherently scalable through our concept of independent PE blocks.

Scaling up will increase parallelism, which will generally increase speed at the cost of

area and power consumption. We scale our design to fit on the Ultra96 FPGA. Table

4.5 reports utilization of logic resources for various components of the system, while

Figure 4-25 shows a logic breakdown across modules within the accelerator design.

Our design uses BRAM for on-chip buffers to store model parameters and feature

maps. We design buffers to be large enough to store all biases and weights for a given

layer at once. In addition, each PE block has a dedicated depthwise and pointwise

output buffer; BRAM usage therefore increases with every additional PE block that

is instantiated. This contributes to our design’s high BRAM utilization.

Our design also relies on using DSP slices within the PE array: each PE uses one

DSP slice for computing MACs and another for performing bias addition. Separating

these two operations and dedicating a DSP slice to each allows them to be performed

in a pipelined fashion, which speeds up computation overall. However, having two

DSP slices per PE rapidly depletes DSP resources since PEs are instantiated numerous

143

2%
3%
3% 3%

1% 2%

69%

17%

LUTs

Bias & Quant. Factors GLB
Filter Weights GLB
Input Feature Map GLB
Residual Skip GLB
Depthwise Outputs Buffer
Pointwise Outputs Buffer
PE & Quantization Logic
Network-on-Chip (NoC)

66%

34%

LUTRAM

1% 3% 4%
4% 1%

2%

75%

10%

FF
4%

41%

19%

20%

4% 12%

BRAM

95%

5%DSP

Figure 4-25: Accelerator logic breakdown by module type.

144

times. If needed, DSP usage could be halved by serializing all computation in a PE

to go through a single DSP slice or, if there are enough LUTs available, by switching

simpler computations to LUT-based resources.

From a utilization standpoint, the PE is the most critical design component as

utilization will scale with the number of PEs instantiated. We therefore aim to

make our reconfigurable PEs as compact as possible, without sacrificing PE compute

speed. We reuse control logic and registers throughout both depthwise and pointwise

convolution and rely on distributed RAM for efficient PE storage. A single PE requires

around 150 registers, 34 LUTs as memory, 2 DSP slices, and 220 LUTs in total.

Timing Summary

Our accelerator operates in a single clock domain, i.e., all PEs, blocks, and buffers are

clocked at the same frequency and designed to work in sync with each other. In our

implemented design, the accelerator is clocked at 250 MHz. This clock is generated

at the PS-PL interface and routed to all key components of the design — the DMA

interface, FIFOs, and the top level wrapper for our accelerator.

When implemented at 250 MHz, our design is reported to have a worst negative

slack (WNS) of 0.043 ns. We can use this to gauge the maximum frequency our

design could support: 𝑓max = 1/(𝑇clk − WNS) where 𝑇 = 1/𝑓clk = 4 ns. From this,

we estimate 𝑓max to be around 252 MHz.

The critical path in a logic design is a limiting factor to how fast the design can

be clocked; in our implemented design, the critical path lies within the input feature

map NoC. More specifically, it is a path coming from a depthwise output buffer to a

PE when inputs are being delivered to the PE array for pointwise convolution.

4.6.2 Logic Performance Analysis

This section discusses performance of the register-transfer logic for our accelerator

design — namely everything implemented on the programmable logic fabric, and

excluding the Zynq processing system. The following results come from a post-

145

implementation functional simulation of the design across all FastDepth layers.

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Si
m

ul
at

ed
 La

ye
r R

un
tim

e
[m

s]

FastDepth Layer Index

Depthwise Active Time Depthwise Idle Time Pointwise Active Time Pointwise Idle Time

Figure 4-26: Layer-by-layer runtime in simulation (clocked at 250 MHz). Pointwise
computation dominates active time, as is to be expected since there are more pointwise
MACs than depthwise MACs in FastDepth. Depthwise idle time is due to PEs waiting
for the input feature map GLB to fill up (which is why layers 0 and 2, requiring 4×
as many input activations due to convolution strides of 2, experience high depthwise
idle times). Pointwise idle time is due to PEs waiting for output buffers to clear out.

Layer-by-Layer Runtime

Figure 4-26 shows simulated runtimes across layers in FastDepth. The runtimes

are broken down into active time spent on depthwise and pointwise computation

as well as idle time where PEs wait for input/output data movement to complete.

Depthwise idle time mainly comes from PEs waiting for input feature map tiles to

finish streaming in, while pointwise idle time comes from PEs waiting for output

feature map tiles to finish streaming out. Idle time varies by layer since it depends on

how many tiles as well as how many channels are being processed within that layer.

Overall, idle time accounts for half of the total runtime aggregated across all layers.

This highlights that memory latency, the source of idle time here, is a remaining

challenge that would need to be addressed in order to improve the performance of

the accelerator. We discuss memory latency more in Section 4.6.5.

146

Layer-by-Layer Power Consumption

Figure 4-27 shows the simulated power consumption across layers, taking the switch-

ing activity of logic into account. Layers tend to consume between 1.5 and 2.5 W

of power, with an observed slight dip in power consumption within the bottleneck

region at the encoder-decoder interface (layers 12−15). Taking a weighted average

based on what fraction of the network the layer constitutes, we estimate the overall

power consumption of our accelerator to be around 1.9 W.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Po
w

er
 [W

]

FastDepth Layer Index

Figure 4-27: Layer-by-layer power consumption in simulation.

Figure 4-28 shows the breakdown of power consumption into dynamic and static

power, as well as amongst the different sources of dynamic power. These power

estimates were gathered on a per-layer basis from simulation, similar to the above

analysis, and were then aggregated across layers.

From this breakdown, we observe that BRAM power consumption dominates; this

is due to data movement of feature maps and parameters to and from BRAMs that

make up most of our on-chip memory (input data GLBs and output data buffers).

Furthermore, in our design, the read and write ports of BRAMs are set to always

be enabled; however, these ports are not always both in use, e.g., after a BRAM is

loaded or emptied. Thus, there is potential to reduce BRAM power consumption in

our design by disabling read or write BRAM ports when they are not in use.

The next two highest sources of power consumption comes from logic elements and

signals transmitted on internal wires. These are indicative of the power consumption

of the network-on-chip that delivers data to and from processing elements, as well as

147

datapaths between GLBs and external DRAM. A potential way to reduce this power

consumption could be to lower wire switching activity by gating signal paths that are

not actively delivering data at a particular moment in time.

1.67 W
(88%)

0.23 W
(12%)

On-Chip Power Breakdown
Dynamic Static

0.22 W
(13%)

0.35 W
(21%)

0.36 W
(22%)

0.55 W
(33%)

0.19 W
(11%)

Dynamic Power Breakdown
Clocks Signals Logic BRAM DSP

Figure 4-28: Power consumption breakdown from simulation. BRAM power con-
sumption dominates, followed by logic power and signal power.

4.6.3 System Performance Analysis

This section now considers a complete functioning system that includes the Zynq

processing system and DRAM. Results presented here come from experiments running

end-to-end FastDepth inference on the Ultra96 board.

System Runtime

Figure 4-29 shows a layer-wise breakdown of FastDepth runtime, reporting data from

both simulation as well as on physical hardware. Runtimes on hardware are largely in

accordance with those observed in simulation, though there does appear to be some

overhead. The singular difference between our design in simulation and our design on

hardware is the inclusion of the AXI DMA and Zynq PS interface in the latter. This

may be contributing to the observed overhead, though this is difficult to verify as

both components – especially the Zynq PS interface – are difficult to simulate. The

slightly more noticeable overhead on hardware (relative to in simulation) for layers

148

such as layer 0 and layer 2 may due to the large number of tiles being processed with a

convolution stride of 2. Since tiles are fed into the accelerator in a sequential manner,

reading from the DMA channel will happen more frequently for those channels.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ru
nt

im
e

[m
s]

FastDepth Layer Index

In Simulation (without DMA) On Hardware (with DMA)

Figure 4-29: Layer-by-layer runtime on hardware (clocked at 250 MHz), compared
with the previously reported layer-by-layer runtime from simulation.

FastDepth
Accelerator

Inference
Runtime

Maximum
Framerate

Energy
Efficiency

In Simulation 22.5 ms 44.4 fps 7.3 fps/W
On Hardware 29.0 ms 34.5 fps 5.7 fps/W

Table 4.6: FastDepth accelerator runtime and energy efficiency given average power
consumption of 6.1 W. The accelerator achieves real-time inference at over 30 fps.

Summing across all layers, we get the total inference runtime for the FastDepth

accelerator. Table 4.6 reports this alongside maximum supported framerates and esti-

mated energy effiency. Our observed hardware runtime is 29% higher than simulated

runtime; however, both still achieve real-time inference speeds at over 30 fps.

Up until now, we have been considering layers in isolation of any processing that

happens on the CPU in between layers. This was to isolate the performance of

our accelerator within the system from the system at large. Now, we take CPU

processing into account as well. Figure 4-30 shows a layer-wise breakdown of system

runtime, including overheads for PS-side buffer allocation as well as feature map

transformations taking place between layers. The Layer Processing runtimes reported

in this figure include not the accelerator runtimes that were previously reported in

149

Figure 4-29, but also the overhead coming from allocating PS-side DMA buffers12

as well as copying data arrays to those buffers prior to them being streamed onto

the accelerator. The Feature Map Transform runtimes encapsulate the overhead of

un-tiling an output feature map from the accelerator, padding it, and then re-tiling it

to be fed back into the accelerator as input for a subsequent layer. These transforms

present a system-level challenge and are discussed more in Section 4.6.5.

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ru
nt

im
e

[m
s]

FastDepth Layer Index

Full Layer Processing Input Feature Map Transform Output Feature Map Transform Skip Feature Map Copy

Figure 4-30: System runtime including PYNQ API calls and feature map transforma-
tions between layers. Feature map transforms involve aligning and merging output
tiles, which incurs significant runtime overhead (to be discussed in Section 4.6.5).

System Power Consumption

We measure system power consumption through sensors on the Ultra96 using the

PMBus protocol that is supported by the Linux kernel running on the Zynq PS.

Since we use the PYNQ framework as the frontend to our system, we take advantage

of the pynq.pmbus class that can read and record sensor values during processing.

A power profile of our system during FastDepth inference is shown in Figure 4-31.

At resting state, prior to the bitfile with our accelerator logic being loaded onto the

FPGA, the system consumes around 4.75 W of power. Upon loading our design, power

consumption rises to just above 6 W and remains steady throughout the processing

of all FastDepth layers. On average, the system consumes around 6.1 W of power

12By calling the Contiguous Memory Allocator in the AXI DMA class of the PYNQ API.

150

during inference. This is about 1.2−1.4 W higher than the power consumption of the

system in its idle state, which is slightly lower than the power levels that we observed

on a layer-per-layer basis in simulation.13

0

1

2

3

4

5

6

7

Po
w

er
 [W

] a
nd

 C
ur

re
nt

 [A
]

Ultra96 System Power Consumption During FastDepth Inference
power current avg. power avg. current

FPGA Load Running FastDepth Layers 0-20

Figure 4-31: System power consumption during end-to-end FastDepth inference on
the Ultra96. In its idle state, the system consumes around 4.75 W of power. During
inference, the system consumes around 6.1 W.

4.6.4 External Memory Accesses

One of our contributions in this accelerator design is a dataflow and supporting ar-

chitecture that seeks to minimize how many DRAM accesses are performed during

layer computation. Since we are targeting an embedded FPGA system with limited

on-chip memory (less than 1MB), it is infeasible to store intermediate feature maps

(between layers) in their entirety on-chip. We instead focus on minimizing how many

times an input feature map value, weight, or bias is read from DRAM as well as how

many times an output feature map value is written to DRAM. In this context, the

minimum corresponds to the size of a feature map, weight, or bias tensor, i.e. all

input values will need to be brought on-chip once during inference and all output

values will need to be written out once.

We compare the number of DRAM accesses in our design to these minimums in two

stages. In the first stage, we assume our default design bitwidths for datatypes (e.g.

feature map activations are 8 bits, weights are 10 bits). Any DRAM access overhead in
13It is likely that the resting state system power included idle FPGA power consumption.

151

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
at

a
Ac

ce
ss

ed
 [

M
B]

FastDepth Layer Index

Reading Parameters (Weights, Biases, Quantization Factors) from External Memory
Target Minimum Our Design with Default Bitwidths Our Design with Extended Bitwidths

0.0

0.4

0.8

1.2

1.6

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
at

a
Ac

ce
ss

ed
 [M

B]

FastDepth Layer Index

Reading Input Feature Maps from External Memory
Target Minimum Our Design with Default Bitwidths Our Design with Extended Bitwidths

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
at

a
Ac

ce
ss

ed
 [M

B]

FastDepth Layer Index

Writing Output Feature Maps to External Memory
Target Minimum Our Design with Default Bitwidths Our Design with Extended Bitwidths

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
at

a
Ac

ce
ss

ed
 [M

B]

Fastdepth Layer Index

Aggregate External Memory Read & Writes
Target Minimum Our Design with Default Bitwidths Our Design with Extended Bitwidths

Figure 4-32: External memory accesses in our design vs. target minimums.

152

Datatype Default
Bitwidth

Extended Bitwidth for
Alignment in DRAM

bias values 32 bits 32 bits (packed ×1 into 32-bit word)
quantization factors 5 bits 32 bits (packed ×1 into 32-bit word)

filter weights 10 bits 16 bits (packed ×2 into 32-bit word)
feature map values 8 bits 8 bits (packed ×4 into 32-bit word)

Table 4.7: Datatypes being streamed into or out of the accelerator, listed alongside
their default and extended bitwidths. DRAM onboard the Ultra96 has a width of 32
bits, thus limiting our stream word size to 32 bits. We extend datatype bitwidths as
necessary to facilitate packing into 32-bit words.

this analysis stage reflects redundant reads or writes. In the second analysis stage, we

assume bitwidths have been extended for better alignment in DRAM. For instance,

10-bit weights do not fit well into a 32-bit word — instead, we set aside 16 bits

for weights, so that two weights can then be packed into a 32-bit word. Table 4.7

summarizes the default bitwidths along with the extended bitwidths for the various

datatypes in our design. Under-utilization of memory due to these extended bitwidths

will therefore also factor into DRAM access overhead.

The four graphs in Figure 4-32 quantify DRAM accesses in our design relative to

the minimums we define earlier. The graphs report statistics for different datatypes,

both with default bitwidths as well as extended bitwidths.

∙ Our design achieves the target minimum in reading parameters — every in-

dividual weight, bias, and quantization factor is read from external memory

only once throughout inference. This is enabled by our on-chip weight and bias

GLBs that have been sized to store all parameters for any given layer at once.

The only overhead in reading parameters comes from extending bitwidths due

to weights being 10-bits and not fitting well into 32-bit words.

∙ Our design incurs overhead in reading input feature maps. This is due to

padding done off-chip and padded input feature maps being stored in DRAM

prior to being read in. Since our design works on 7×7 tiles and pads for 3×3 con-

volution, tiling and padding will introduce overhead of (9×9)/(7×7) = 1.65×.

153

The impact of this overhead will be more noticeable for layers with many feature

map tiles, e.g., at the beginning and end of the network.

∙ Our design incurs much less overhead in writing output feature maps than in

reading input feature maps. The only source of overhead here is actually under-

utilization of the 32-bit bandwidth of the output stream. Our accelerator out-

puts rows of 8-bit values at a time; these rows are 7 elements long (corresponding

to our tile size of 7). This amounts to 56 bits that are padding to 64 bits prior

to being serialized into a 32-bit stream. Hence, this under-utilization by 12.5%

manifests itself as memory access overhead.

Overall, our design closely follows the target minimum trends for external memory

accesses. Primary sources of overhead include padding in input feature maps and

packing data into fixed-width 32-bit streams. Possible steps for improvement include

re-evaluating whether padding off-chip can be avoided as well as performing more

fine-grained packing, e.g., of weights.14

4.6.5 Challenges

Memory Latency Hiding

In our accelerator, there are two key sources of memory latency, both involving on-

chip buffers: (1) read latency when waiting for data stored in buffers to be read out

after a request for it is made, and (2) the delay in waiting for buffers (specifically our

input GLBs) to be filled up with data before any can be read out.

Our design seeks to hide read latency by prefetching inputs and parameters when-

ever possible. Individual PEs within the PE array assert control signals to indicate

that they are ready for a subsequent input or parameter. Since PEs all operate in

sync, it is straightforward to predict when the PE will finish computing a given row

and be ready for new incoming data. This allows us to prefetch from GLBs and keep

all PEs continuously busy once computation begins.
14Not all weights in our design use their full bitwidth, e.g., pointwise weights that have been

quantized to 8 bits. These can be packed twice as compactly into every 32-bit word as our current
approach, thus lowering memory access overhead.

154

read ifmap from DRAM to GLB

read bias
into GLB
read DW weights
into GLB

read PW weights into GLB

compute DW MACs

write outputs to DW buffer

compute PW MACs

write outputs to PW buffer

read next ifmap from DRAM to GLB

compute DW MACs

write outputs to DW buffer

write outputs to DRAM

compute PW MACs

write outputs to PW buffer

read next ifmap from DRAM to GLBhold ifmap in GLB, prefetch to PEs hold ifmap in GLB , prefetch to PEs

hold bias in GLB , prefetch to PEs

hold DW weights in GLB , prefetch to PEs

hold PW weights in GLB , prefetch to PEs

from
DRAM

MACs

to DRAM

initial loading compute depthwise compute depthwisecompute pointwise compute pointwiseidle core

Figure 4-33: Timing diagram illustrating memory accesses overlapped with depthwise
and pointwise computation. The red boxes highlight two potential sources of idle time
in the PE array. Both represent challenges in hiding memory access latency.

However, computation within the PE can only begin once all GLBs are loaded.

This constraint was put in place due to how rapidly depthwise or pointwise convolu-

tion can complete in certain layers. Indeed, the highly parallelized processing in our

accelerator shifts the bottleneck to the memory hierarchy. We attempt to prefetch

data into the GLBs just as we prefetch data into PEs, e.g., by prefetching the next

layer’s input feature map while the current layer’s pointwise operation is being com-

puted. For many layers, this is infeasible as GLB loading time still exceeds compute

time. A similar challenge is faced with unloading pointwise output buffers at the

end of layer processing. GLB load-in and output buffer read-out are the two main

sources of idle time in our PE array, as highlighted in Figure 4-33. We envision that

a potential way of addressing this could be by using a separate clock domain for GLB

writes and output buffer reads, in hopes of clocking those ports faster to hide more

of the inherent memory latency.

Feature Map Transformations

Transformations of feature maps between the output of one layer and input to the

next are performed by the quad-core ARM Cortex-A53 CPU onboard the Ultra96.

Since our system uses the Python frontend of the PYNQ framework [120] to interface

with implemented logic, we use NumPy [126] for these transformations.

Transforming Output Feature Maps from a Given Layer. Output feature

map values are read out from on-chip memory into DRAM in a continuous stream of

155

32-bit words. Transforming this 1-dimensional vector into a 4-dimensional15 feature

map tensor requires the following steps:

1. Unflattening the vector. Given the expected output feature map dimensions

and settings (e.g., number of channels, total number of output tiles, the stride

with which output tiles are computed, whether decomposition has taken place),

the 1-D vector is reshaped into a multi-dimensional tensor. This allows us to

easily swap axes later on to transpose dimensions and consolidate tiles.

2. Unpacking 32-bit words to 8-bit values. In the output stream, every 32-bit

word packs four 8-bit feature map values. This conversion unpacks individual

feature map activations. Unpacked activations are in column-major order.

3. Transposing to rearrange activations so that they are in row-major order.

This can be done efficiently by creating a new view of how tensor data is read

in memory16 without creating a new copy of the entire tensor.

4. Rearranging dimensions and merging tiles. This step effectively reshapes the

activations into 𝑁𝐶𝐻𝑊 format. To achieve this, it merges output tiles in the

horizontal and vertical directions. Unlike the steps above, merging dimensions

from shape (𝐻
𝐻𝑇

, 𝑊
𝑊𝑇

, ..., 𝐶,𝐻𝑇 ,𝑊𝑇) to (𝑁,𝐶,𝐻,𝑊) cannot be expressed as sim-

ply a different view of tensor data in memory. It requires moving data (for the

tiles) within memory. As a result, this step creates a new copy of the entire

tensor, which incurs a time cost. For layers with high channel dimensionality

and many feature map tiles, e.g., layers 0 to 11 shown in Figure 4-30, this step

accounts for over 95% of all the time spend on output feature map transform.

Layer 1 in particular suffers the most, as it has both a large output channel

dimension (64) and a large tile number (16×16 tiles).

Transforming Input Feature Maps for the Next Layer. After the output

feature map has been transformed via the steps described above, it is transformed
15Following the 𝑁𝐶𝐻𝑊 (batch, channel, height, width) format.
16This uses NumPy’s stride_tricks.as_strided method.

156

into an input stream for the subsequent layer. This input feature map transform

assumes a starting tensor shape of (𝑁,𝐶,𝐻,𝑊) and performs the following steps:

1. Padding the height and width. This is done by creating an array of zeroes of

shape (𝑁,𝐶,𝐻+2,𝑊+2) and setting center elements equal to tensor values.

2. Tiling the tensor into 𝐻
𝑃𝑇

× 𝑊
𝑄𝑇

tiles, each of shape (𝑁,𝐶,𝐻𝑇 ,𝑊𝑇). In our

design, 𝑃𝑇 = 𝑄𝑇 = 7 and 𝐻𝑇 = 𝑊𝑇 = 9. This can be done efficiently by

modifying how tensor data is viewed in memory, without re-copying the tensor.

3. Transposing tile height and width dimensions so that the activations are in

column-major order, i.e., of shape (𝑁,𝐶,𝑊𝑇 , 𝐻𝑇). This enables activations

from multiple rows to be fed in parallel to PEs withing a PE block, to minimize

loading times as well as to keep PEs in sync.

4. Parallelizing tiles for parallel feeding into PE blocks. There are 𝐵 = 8 blocks,

and each block works on a distinct input channel. Thus, the parallelizing

step adds a new dimension, reorganizes tile data from shape (𝑁,𝐶,𝑊𝑇 , 𝐻𝑇)

to (𝑁, 𝐶
𝐵
, 𝐵,𝑊𝑇 , 𝐻𝑇) and then moves the new dimension so that the final shape

is (𝑁, 𝐶
𝐵
, 𝐻𝑇 ,𝑊𝑇 , 𝐵). Again, this can be done by re-viewing tensor data in

memory without creating a copy.

5. Packing 8-bit values into 32-bit words. This step slices the innermost tensor

dimension into sets of four values that are then packed into 32-bit words.

6. Flattening the tensor into a single vector of 32-bit values that can be streamed

onto the chip for layer processing.

A flow diagram of these transforms is shown in Figure 4-34. Several of the output

feature map transforms appear to be inverses of the input feature map transforms

(unflattening → unpacking → merging tiles vs. tiling → packing → flattening). This

leads one to question why these transforms are even performed. The transforms

are made necessary by the padding and parallelization steps for input feature maps.

Padding introduces new values (zeros) into the tensor, while parallelization changes

157

PE Array

Parallelizing
Packing Bytes
Flattening

Unflattening
Unpacking Bytes

PaddingTiling Merging Tiles

Transposing
Transposing

Input Feature Map
for Layer L+1

Output Feature Map
for Layer L

32b word stream 32b word stream

C QT

PT

C PT

QT

C WT

HT

C HT

WT

C H

W

Figure 4-34: Flow diagram of feature map transformations taking place between
layers. These transformations convert the output stream coming from the accelerator
into a high-dimensional tensor that is padded and tiled before being fed back into the
accelerator via an input stream. In our system, these transformations are done by
the CPU onboard the Ultra96, while layer processing is done on the FPGA.

how tensor values are ordered. Both present a challenge when trying to avoid trans-

forming the entire activation tensor between one layer and the next.

The parallelization step could be integrated into implementable logic by creating

an extra 𝐵 (=8) FIFOs and feeding output feature map tiles of every 8th channel

into the appropriate FIFO. Synchronously popping the first element in all the FIFOs

would be equivalent to performing the parallelization transform.

However, padding remains a challenge. In fact, padding complicates tiling: when

merging tiles in the output feature map, the tiles are of shape (𝑁,𝐶, 𝑃𝑇 , 𝑄𝑇), but

when tiling the input feature map, the tiles are of shape (𝑁,𝐶,𝐻𝑇 ,𝑊𝑇) and have

overlapping values. The two steps are therefore not true inverses of each other. That

alone necessitates transforming the entire activation tensor in our approach.

Designing specialized logic to handle padding on-the-fly as feature map values

stream through could allow the output stream to directly feed back as input without

any transformations. Though this would incur a logic utilization cost, we expect it

158

would reduce overall system runtime when compared to our current approach. We

leave this as part of future work to improve the system.

4.7 Evaluation of FastDepth on the Ultra96 SoC

This section offers an evaluation of our accelerator design against our own previous

work on FastDepth as well as against comparable works in literature.

4.7.1 Against FastDepth on the Jetson TX2

We first evaluate the performance of our accelerator-friendly FastDepth network on

the Ultra96 board against the performance of our original FastDepth DNN on the

NVIDIA Jetson TX2. Table 4.8 summarizes the key evaluation metrics used to com-

pare the different platforms.

Platform NVIDIA Jetson TX2 GPU NVIDIA Jetson TX2 CPU Ultra96max-N mode max-Q mode max-N mode max-Q mode

Hardware NVIDIA
Pascal CPU

NVIDIA Denver 2
ARM Cortex-A57

ZU3EG Xilinx Zynq
UltraScale+ MPSoc
w/ ARM Cortex-A53

Process 16 nm 16 nm 16 nm

Memory 8GB 128-bit
LPDDR4

8GB 128-bit
LPDDR4

2GB 32-bit
LPDDR4

Operating
Frequency 1.30 GHz 0.85 GHz 2.0 GHz 1.2 GHz 1.5GHz (CPU)

250 MHz (FPGA)

FastDepth
𝛿1 Accuracy 77.1% 77.1% 77.0%

FastDepth
Runtime

5.6 ms
(178 fps)

8.2 ms
(120 fps)

37 ms
(27 fps)

64 ms
(15 fps)

29 ms on PL
(34.5 fps)

Power (Idle) 3.4 W 1.9 W 3.4 W 1.9 W 4.7 W
Power (Busy) 12.2 W 6.5 W 10.5 W 3.8 W 6.1 W
Efficiency 14.5 fps/W 18.5 fps/W 2.6 fps/W 3.9 fps/W 5.7 fps/W

Table 4.8: Evaluation of our accelerator against FastDepth on Jetson TX2. When
compared to the TX2 CPU, our accelerator achieves about 1.5−2× improvement
in energy-efficiency. FastDepth on the TX2 GPU, however, still achieves a higher
energy-efficiency due to its much higher supported framerate.

Of these platforms, the Jetson TX2 GPU achieves significantly higher framerates;

despite the relatively high power consumption, the GPU still achieves the highest

159

frames per Watt efficiency. The TX2 CPU, however, achieves significantly lower

framerates, and our FastDepth accelerator on the Ultra96 is more competitive against

it. Although the CPU power consumption drops to 3.8 W in the energy-efficient

max-Q mode, the framerate also drops to 15 fps — below real-time inference. In

comparison, the FastDepth accelerator can achieve over double that framerate at just

around 6 W. This results in our accelerator design achieving a higher efficiency than

the TX2 CPU in either mode configuration.

4.7.2 Against Other Workloads on the Ultra96

There have been many implementations of depth estimation algorithms on FPGAs;

however, they have been based on more traditional computer vision approaches, e.g.

stereo matching [127, 128]. Since our FastDepth work falls into the deep learning

domain, we narrow down our evaluation to learning-based approaches and consider

workloads for tasks such as image classification and object detection. Furthermore,

we compare against works that have been deployed onto the same hardware platform

as our work, i.e., on the Ultra96 SoC system. Table 4.9 summarizes this evaluation.

Work Task # of
Params

Precision
(A/W) Accuracy Frequency

(MHz)
Batch
Size

Framerate
(fps)

Power
(W)

Efficiency
(fps/W)

Synetgy [129] IC 3.3M 4/4b 68.3% (top-1) 250 16 96.5 5.5 19.3
FINN-R DoReFa-Net/PF [130] IC 60.2M 2/1b 50.3% (top-1) 220 — — 10.2 —
MobileNet [131] IC — 4/3b 68.1% (top-1) 215 — >18-27 6.9 >2.6-3.9
SkyNet [132] OD 0.44M 9/11b 71.6% (IoU) — 4 25.05 7.26 3.5
FINN-R Tincy YOLO [130] OD 6.4M 3/1b 50.1% (mAP) 220 — — 9.7 —
MobileNet-SSD [131] OD — 4/3b 66.4% (mAP) 215 — 18-27 6.9 2.6-3.9
Ours (FastDepth) DE 1.71M 8/10b 77.0% (𝛿1) 250 1 34.5 on PL 6.1 5.7
Ours (MobileNet only) — 1.29M 8/10b — 250 1 48.5 on PL 6.1 7.9

Table 4.9: Evaluation against related accelerators on the Ultra96 SoC. Definition of
task abbreviations: IC = image classification, OD = object detection, DE = depth
estimation. Our accelerator design consumes less power than many of the cited works,
while performing inference at higher precision on a similar or more complex task.

Evaluation Against Image Classification Accelerators

The first three works shown in this table deploy image classification networks onto the

Ultra96. In Synetgy [129], Yang et al. present a compact convolution neural network,

160

DiracDeltaNet, that uses 1×1 convolutions and shift operations to replace spatial

convolutions. They also co-design an accelerator that supports high batch sizes and

performs ImageNet classification inference at 96.5 fps on the Ultra96. Their usage of

smaller convolutions and shift operators results in simpler logic and lower resource

utilization, which ultimately factors into a relatively low power consumption.

The FINN-R framework [130] offers end-to-end design space exploration and au-

tomated creation of inference architectures on FPGAs. FINN-R supports arbitrary

precision in weights and activations as well as two options for architecture design: a

dataflow architecture that is customize-able for a specific neural network topology to

avoid "one-size-fits-all" inefficiencies, as well as a multilayer offload architecture that

helps alleviate fragmentation overhead or handle cases where an unrolled dataflow

architecture exceeds device resources constraints. This flexibility, along with layer

cost models and a quantization-aware layer transformation, allows FINN-R to fur-

ther adapt networks and generate executable hardware designs for them. As part

of their evaluation, the authors apply FINN-R to various reduced-precision neural

networks. Their modified DoReFa-Net model and architecture are very low-precision

but reportedly have high power consumption.

In the third listed work, Li et al. [131] present a system for low-power object

detection on the Ultra96. They use a customized MobileNet-SSD network, which itself

uses MobileNet as a backbone, leading to similar design challenges that we faced in

our FastDepth accelerator design. Indeed, their accelerator shares a key design aspect

with ours: a hybrid dataflow for depthwise separable convolutions. However, their

dataflow choice depends on the position of the layer in the network, not whether the

layer has a depthwise or pointwise convolution. They opt to use an output-stationary

dataflow for earlier layers in MobileNet but argue against using it for all layers since

deeper layers contain more parameters and require larger weight buffers. Hence, they

switch entirely to weight-stationary for later layers. Furthermore, they use dedicated

PEs for 3×3 and 1×1 convolutions. This contrasts with our use of a row-stationary

and output-stationary dataflows with reconfigurable PEs, where we toggle between

depthwise- and pointwise-dedicated dataflows within every layer.

161

As part of their evaluation, Li et al. isolate MobileNet from within their cus-

tomized network to compare against other image classification accelerators. We re-

port these statistics as they are more directly comparable to the MobileNet encoder

we use in our own FastDepth work. Our MobileNet encoder can support similar if not

higher framerates and runs at slightly less power than the cited work. Furthermore,

our accelerator supports a higher precision for weights and activations, which may

lead to higher accuracy if the encoder were used to run classification tasks.

Evaluation Against Object Detection Accelerators

Image classification tends to be a simpler task than prediction tasks requiring not

only the encoding of features within an image but also decoding to produce pixel-

specific results, e.g. bounding boxes in object detection or dense depth maps in depth

estimation. Since FastDepth is a depth estimation DNN, it presents a more complex

workload to map onto an accelerator than many of the image classification workloads

that have been explored in recent years. To present an evaluation against more compa-

rable workloads, we include several works on object detection accelerators. One such

work is SkyNet [132], where Zhang et al. present a hardware-accelerator co-design

approach to object detection. Their SkyNet architecture consists of bundles com-

bining 3×3 depthwise convolutions with 1×1 pointwise convolutions. Stacks of these

bundles form the backbone of the network, which is then augmented with bypasses

(resembling skip connections) and an adapted YOLO detector head for bounding box

regression. Their accelerator exploits data reuse through tiling and batching feature

maps and implements a 5-stage pipeline for bundle processing. On the Ultra96, their

accelerator achieves inference speeds of 25 fps while consuming 7.26 W.

Table 4.9 also reports other object detection networks deployed on the Ultra96,

including a Tincy YOLO accelerated using the FINN-R framework [130] described

earlier, as well as the customized MobileNet-SSD by Li et al. [131]. The latter, whose

MobileNet backbone we previously compared against, achieves 18−27 fps on the ob-

ject detection task, consuming around 6.9 W of power. In comparison, our FastDepth

accelerator consumes slightly less power and achieves a slightly higher framerate on

162

its depth estimation task, while performing inference at a higher precision.

4.8 Summary

In this part of our work on FastDepth, we develop a dataflow design and an acceler-

ator architecture to deploy the FastDepth DNN onboard an embedded CPU-FPGA

SoC. We apply an algorithm-hardware co-design approach that re-evaluates the orig-

inal FastDepth DNN topology and modifies it to be more accelerator-friendly. Our

contributions are listed below, alongside the sections in which they are described:

∙ Heterogeneous Dataflow Design. We develop a heterogeneous dataflow

design to accelerate processing of depthwise separable layers. We use a row-

stationary dataflow for spatial accumulation in depthwise convolutions, and an

output-stationary dataflow for channel-wise accumulation in pointwise convolu-

tions. Our heterogeneous dataflow avoids writing any intermediate depthwise

feature maps out to external memory. [Section 4.2.1]

∙ Modular and Scalable PE Array with Reconfigurable PEs. We design

a PE array and on-chip memory hierarchy to exploit row-wise and channel-wise

parallelism in depthwise and pointwise convolutions. Our PE array is built up

of functionally-independent PE blocks that allows the PE array to scale up or

down as necessary. PEs are made reconfigurable to toggle between depthwise

and pointwise operations while reusing as much control logic as possible. The

PE array achieves high spatial utilization for both depthwise and pointwise

convolutions. [Sections 4.3.1, 4.3.2, 4.3.3]

∙ Decoder Modifications for Improved Mapping. In our re-evaluation of the

original FastDepth DNN, we decompose upsampling and convolution operations

in the decoder to reduce computation and ensure that all decoding layers can

easily map onto our proposed accelerator. This decomposition also leads to a

reduction in memory accesses for feature maps. [Section 4.4.1]

163

164

Chapter 5

Conclusion

In this thesis, we explore fast and energy-efficient monocular depth estimation on

embedded platforms. Our work is motivated by recent trends in research on learning-

based depth estimation, where emphasis is placed on improving accuracy at the cost

of increased model size and computational complexity. The practicality of learning-

based depth estimation methods in the real world depends on how well these methods

can be deployed on mobile or embedded platforms, e.g., performing depth estimation

as part of an autonomous navigation system onboard a micro aerial vehicle. Many

state-of-the-art depth estimation methods are deep neural networks that require high

computation power and are just too complex to run in real-time on embedded systems.

Throughout this thesis, we investigate techniques to simplify these methods for real-

time low-power inference.

Compact Depth Estimation DNN In Chapter 2, we present FastDepth [111],

our encoder-decoder DNN architecture for monocular depth estimation. We use a Mo-

bileNet encoder and a lightweight decoder consisting of alternating convolutional and

interpolation layers; we additionally incorporate additive skip connections between en-

coding and decoding layers to produce sharper depth maps. Our DNN heavily makes

use of depthwise separable convolutions in both the encoder and decoder, resulting in

a compact DNN that has 30−80 less MACs than prior works yielding similar accu-

racy rates. In addition, our DNN is balanced in that neither the encoder or decoder

165

dominate computation or runtime; this is an improvement over prior state-of-the-art

work [2] with complex decoder structures dominating runtime.

DNN Compilation and Simplification In Chapter 3, we describe the steps we

take in achieving real-time inference on an embedded CPU/CPU — namely, the

NVIDIA Jetson TX2. We find that the depthwise separable layers prevalent through-

out FastDepth incur runtime penalties despite a reduction in MACs due to unopti-

mized layer implementations being used. To resolve this, we perform hardware-specific

compilation [98] that tunes every FastDepth layer for faster runtime on our selected

hardware; this tuning process speeds up processing of depthwise separable layers by

almost 2× on the TX2 GPU and by over two orders of magnitude on the TX2 CPU.

We additionally apply channel pruning [4] to all layers to remove filter channels that

have least impact on model accuracy, thereby simplifying FastDepth even further;

this step enables an additional 1.5−1.8× speedup in runtime. After compilation and

pruning, our model performs depth inference at 178 fps on the TX2 GPU and at 27

fps on just the TX2 CPU, with total power consumption ranging 10−12 W and active

power consumption under 10 W. FastDepth achieves accuracy rates on par with prior

work, while running over an order of magnitude faster.

Custom Dataflow and Accelerator Design In Chapter 4, we explain our ap-

proach for accelerating FastDepth on an FPGA. We are motivated by the design

flexibility enabled through custom hardware design, which allows us to explore trade-

offs in area, speed, and power consumption to develop an energy-efficient accelerator

dedicated for our target task. We employ an algorithm-hardware co-design strategy,

in which we design our accelerator in conjunction with modifying the workload itself

(the FastDepth DNN) to make it more accelerator-friendly. This approach results

in a 21% reduction in data movement of feature maps and parameters and enables

high spatial utilization of the accelerator hardware. Our accelerator natively runs

depthwise separable layers using a reconfigurable engine that toggles between a row-

stationary dataflow for depthwise convolutions and an output-stationary dataflow for

166

pointwise convolutions. The accelerator exploits row-wise and channel-wise paral-

lelism in its compute engine and relies on banked on-chip buffers for high throughput

in the network-on-chip. We deploy our accelerator onto the Ultra96 SoC, where it

runs FastDepth layers in 29 ms with a total system power consumption of 6.1 W

and an estimated active power consumption of under 2 W. When compared to our

deployment of FastDepth on the Jetson TX2 CPU, our custom-designed accelerator

achieves 1.5−2× improvement in energy efficiency. FastDepth on the TX2 GPU,

however, still boasts a higher energy-efficiency due to its higher supported framerate.

With these contributions, we show different ways in which learning-based depth

estimation methods can be designed and deployed for fast and energy-efficient infer-

ence. All of the platforms on which FastDepth is evaluated in this thesis have small

form factors and can be easily carried by robotic vehicles out in the field. Our work

demonstrates that depth estimation DNNs can run with reasonably high accuracy in

real-time while consuming on the order of several watts, further paving the way for

learning-based depth processing live on the edge.

5.1 Key Takeaways

In looking at all of our work on FastDepth, we summarize the following takeaways:

In depth estimation DNN design, complexity is not necessarily better,

while simplicity is not necessarily worse. This concerns the tradeoff between

DNN complexity and accuracy. A common trend in computer vision research is to

explore more complex DNNs with potential pre- and post-processing steps in order

to improve accuracy. However, an accuracy boost may not be not very meaningful if

the algorithm cannot be deployed in a practical setting due to it surpassing compute

limitations. In our development of the FastDepth DNN we adopt an encoder-decoder

DNN structure similar to those used in state-of-the-art networks. However, we fo-

cus on selecting efficient low-latency building blocks for each. Instead of seeking to

167

increase depth inference accuracy, we aim to maintain accuracy while significantly

simplifying the DNN. Our FastDepth model succeeds in achieving accuracy rates

similar to prior works but at a fraction of the size and running over an order of

magnitude faster. This shows that simplicity in depth estimation DNNs does not

necessarily translate to degraded accuracy.1

Hardware-in-loop optimizations are critical in meeting performance spec-

ifications, such as latency, energy consumption, or utilization. How effi-

ciently an algorithm runs on a given hardware platform largely depends on how well

the algorithm maps to that hardware’s primitives (e.g., binary representation, in-

structions, logic units, registers, memory). Compilers are responsible for optimizing

programs and algorithms to better map and utilize hardware primitives. This extends

to DNNs as well, as our steps in deploying FastDepth onto an embedded CPU/GPU

confirm. Yet hardware-specific compilation alone may not be enough to meet per-

formance specifications, and hardware-in-loop design optimizations become necessary

as well. For instance, when we applied network pruning to FastDepth, we used an

indirect metric (MACs) to guide the pruning process. Though this was sufficient for

our model to achieve our target inference speeds, we could have achieved even better

efficiency had we incorporated live runtime measurements into the process. Another

example of hardware-in-loop design optimization happens as part of our algorithm-

hardware co-design strategy when deploying FastDepth on our custom accelerator.

Here, our performance specification is the utilization of processing elements within

the accelerator. We notice that several FastDepth layers do not map well onto our

PE array design, motivating us to modify the FastDepth DNN — in doing so, we

optimize it for high utilization on our accelerator.

1This concept has been well explored in the realm of image classification DNNs, with research
in pruning, quantization, and compression all showing that it is possible to preserve accuracy while
significantly reducing model size and computation. However, at the time of our work on FastDepth,
this concept had been less well explored for depth estimation DNNs performing an arguably more
difficult dense regression task.

168

There are often tradeoffs between hardware reconfigurability and perfor-

mance, and similar tradeoffs may be addressed in different ways at different

design stages. We observe two such tradeoffs when designing our FastDepth accel-

erator. One tradeoff concerns the reconfigurability of a processing element to support

different dataflows for different convolution types. Non-reconfigurable PEs allow for

a simpler and smaller compute core but complicates load balancing between PEs ded-

icated to a single dataflow/convolution. Reconfigurable PEs incur complexity (logic)

overhead but offer greater flexibility in mapping layers and result in a faster compute

core overall. Here, our analysis argues in favor of reconfigurability. At a later point

in the design stage, we encounter a different tradeoff — whether to keep our compute

core dedicated to 3×3 convolutions or to extend support to 5×5 convolutions found

in the second half of our FastDepth DNN. In this case, reconfigurability would again

incur logic overhead, and we explore whether we can avoid that overhead by taking

advantage of our hardware-algorithm co-design strategy. We are able to modify the

FastDepth DNN for it to map better onto a unified accelerator compute core, with

negligible impact on DNN accuracy. We decide that the hardware cost of reconfig-

urability is not worth it if we can address the underlying issue at an algorithmic level.

Therefore, in a field where the flexibility to support a variety of workloads (e.g., dif-

ferent DNN layers) is often a very desirable hardware design goal, it is important to

consider how similar tradeoffs in a single design can be addressed in different ways

across different design stages.2

5.2 Future Work

Our work on FastDepth faces several limitations and challenges that point to ways in

this work could be extended or improved:

2This is particularly relevant for an FPGA design, where the FPGA can be configured from DNN
to DNN (workload to workload), but some cases may call for reconfigurability within the DNN model
(workload).

169

Extending FastDepth to work in different environments One limitation of

our FastDepth DNN is its interoperability across environments. Since it was trained

on a single dataset (NYU Depth v2), it performs well (i.e., accurately) on indoor

scenes with depth ranging in several meters. However, it will not maintain accuracy

on outdoor scenes with larger depth ranges. As discussed in Section 1.1.2, this lim-

itation pertains to many depth estimation DNNs, not just FastDepth in particular.

However, it motivates investigating whether techniques being explored to improve

cross-environment depth accuracy could be used on FastDepth.

Improving temporal consistency of FastDepth Another limitation of our Fast-

Depth DNN is its robustness across consecutive images, e.g., frames in a video feed.

When performing inference on live video, we observe flickering in the output depth

maps; this indicates that predicated pixel-wise depth values in similar regions across

frames may not always have similar depth estimates. This is also discussed in Sec-

tion 1.1.2 as a general limitation of depth estimation DNNs. However, directly in-

corporating memory-like or feedback-like elements into the FastDepth DNN design

to enforce temporal consistency would increase model complexity and incur runtime

costs. Investigating this tradeoff more carefully and exploring alternate solutions

could be worthwhile next steps in improving FastDepth.

Hiding more memory latency in the accelerator In designing our FPGA-based

accelerator for FastDepth, we put emphasis on compute parallelism, as is evident from

our structuring of PEs into PE blocks as well as banking all on-chip memory to provide

sufficient bandwidth to all of these PE blocks. Increasing both row-wise and channel-

wise parallelism in our compute engine naturally sped up the processing of depthwise

and pointwise convolutions but also exacerbated the bottleneck arising from data

movement between on-chip and off-chip memory. This is discussed in Section 4.6.5

on hiding memory access latency. Thus, one way in which the FastDepth accelerator

could be sped up is by reducing the effect of this memory access latency — perhaps

through a more flexible clock tree or through a more adaptive prefetching strategy.

170

Improving on-chip memory utilization in the accelerator A related aspect

is on-chip memory utilization. Since we designed an accelerator targeting deployment

on an FPGA, we assumed coarse-grained memory in the form of block RAM. As this

memory is already part of the FPGA fabric and comes in fixed block sizes, there is

less flexibility in defining how exactly on-chip memory in our accelerator is organized.

This leads to under-utilized on-chip memory, especially given that layers have different

amounts parameter and feature map data. It could help to improve utilization and

perhaps reduce total on-chip memory within the accelerator by redesigning it with

more fine-grained control, as would be possible in an ASIC design flow.

171

Bibliography

[1] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient Processing
of Deep Neural Networks: A Tutorial and Survey, 2017. arXiv:1703.09039.

[2] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and
Nassir Navab. Deeper depth prediction with fully convolutional residual net-
works. In International Conference on 3D Vision (3DV), pages 239–248, 2016.

[3] Convenient Power Measurements on the Jetson TX2 Board. https://
embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-
on-the-jetson-tx2-tegra-x2-board/, Apr 2018.

[4] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. NetAdapt: Platform-Aware Neural Network
Adaptation for Mobile Applications. In The European Conference on Computer
Vision (ECCV), September 2018.

[5] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning, March 2016. arXiv:1603.07285.

[6] NVPModel. https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-
jetson-tx2-development-kit/, Dec 2018.

[7] Christopher Poulton, Ami Yaacobi, David Cole, Matthew Byrd, Manan Raval,
Diedrik Vermeulen, and M.R. Watts. Coherent solid-state LIDAR with silicon
photonic optical phased arrays. Optics Letters, 42:4091, 10 2017.

[8] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning depth from
single monocular images. In Advances in Neural Information Processing Systems
(NIPS), pages 1161–1168, 2006.

[9] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth extraction from video
using non-parametric sampling. In European Conference on Computer Vision
(ECCV), pages 775–788, 2012.

[10] Janusz Konrad, Meng Wang, and Prakash Ishwar. 2d-to-3d image conversion by
learning depth from examples. In Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 16–22, 2012.

[11] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth Transfer: Depth Extraction
from Video Using Non-Parametric Sampling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36:2144–2158, 2014.

[12] Miaomiao Liu, Mathieu Salzmann, and Xuming He. Discrete-continuous depth
estimation from a single image. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 716–723, 2014.

172

https://embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board/
https://embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board/
https://embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board/
https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/
https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/

[13] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from
a single image using a multi-scale deep network. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2366–2374, 2014.

[14] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In International
Conference on Computer Vision (ICCV), pages 2650–2658, 2015.

[15] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional neural fields
for depth estimation from a single image. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5162–5170, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[17] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, and Jiaya Jia.
GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Esti-
mation. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 283–291, 2018.

[18] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-supervised deep
learning for monocular depth map prediction. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6647–6655, 2017.

[19] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsuper-
vised learning of depth and ego-motion from video. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[20] Ravi Garg, Gustavo Carneiro, and Ian Reid. Unsupervised CNN for single
view depth estimation: Geometry to the rescue. In European Conference on
Computer Vision (ECCV), pages 740–756, 2016.

[21] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised
monocular depth estimation with left-right consistency. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[22] Michele Mancini, Gabriele Costante, Paolo Valigi, and Thomas A Ciarfuglia.
Fast robust monocular depth estimation for obstacle detection with fully convo-
lutional networks. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4296–4303, 2016.

[23] Fangchang Ma and Sertac Karaman. Sparse-to-dense: depth prediction from
sparse depth samples and a single image. IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[24] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman. Self-
supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR

173

and Monocular Camera. IEEE International Conference on Robotics and Au-
tomation (ICRA), 2019.

[25] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor seg-
mentation and support inference from RGBD images. In European Conference
on Computer Vision (ECCV), pages 746–760, 2012.

[26] Zhengyou Zhang. Microsoft Kinect Sensor and Its Effect. IEEE MultiMedia,
19:4–12, April 2012.

[27] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets Robotics: The KITTI Dataset. International Journal of Robotics Re-
search (IJRR), 2013.

[28] HDL-64E Velodyne Lidar. https://velodynelidar.com/products/hdl-64e/.

[29] Faisal Khan, Saqib Salahuddin, and Hossein Javidnia. Deep Learning-Based
Monocular Depth Estimation Methods - A State-of-the-Art Review. Sensors,
20:2272, April 2020.

[30] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. Towards
real-time unsupervised monocular depth estimation on CPU. In IEEE/JRS
Conference on Intelligent Robots and Systems (IROS), 2018.

[31] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. van der Maaten, M. Campbell, and
K. Q. Weinberger. Anytime Stereo Image Depth Estimation on Mobile Devices.
In 2019 International Conference on Robotics and Automation (ICRA), pages
5893–5900, 2019.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[33] Linda Wang, Mahmoud Famouri, and Alexander Wong. Depthnet nano: A
highly compact self-normalizing neural network for monocular depth estimation,
2020. arXiv:2004.08008.

[34] Ibraheem Alhashim and Peter Wonka. High Quality Monocular Depth Estima-
tion via Transfer Learning, 2018. arXiv:1812.11941.

[35] Michele Mancini, Gabriele Costante, Paolo Valigi, Thomas Ciarfuglia, Jef-
frey Delmerico, and Davide Scaramuzza. Towards Domain Independence for
Learning-Based Monocular Depth Estimation. IEEE Robotics and Automation
Letters, PP:1–1, 01 2017.

[36] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen
Koltun. Towards Robust Monocular Depth Estimation: Mixing Datasets for
Zero-shot Cross-dataset Transfer, 2019. arXiv:1907.01341.

174

https://velodynelidar.com/products/hdl-64e/

[37] Tananaev, Denis and Zhou, Huizhong and Ummenhofer, Benjamin and Brox,
Thomas. Temporally Consistent Depth Estimation in Videos with Recurrent
Architectures. In The European Conference on Computer Vision (ECCV)
Workshops, September 2018.

[38] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao, Yu Liu, and You-
liang Yan. Exploiting temporal consistency for real-time video depth estimation.
In International Conference on Computer Vision (ICCV’19), 2019.

[39] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM:
Real-Time Dense Monocular SLAM With Learned Depth Prediction. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[40] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. 3-D Depth Recon-
struction from a Single Still Image. International Journal of Computer Vision,
76:53–69, 2007.

[41] Xingtong Liu, Ayushi Sinha, Masaru Ishii, Gregory D. Hager, Austin Reiter,
Russell H. Taylor, and Mathias Unberath. Dense Depth Estimation in Monocu-
lar Endoscopy with Self-supervised Learning Methods, 2019. arXiv:1902.07766.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[43] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. Software available from tensorflow.org.

[44] F. Chollet. Xception: Deep Learning with Depthwise Separable Convolu-
tions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1800–1807, 2017.

[45] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:

175

Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017.
arXiv:1704.04861.

[46] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In International Conference on Learning
Representations, 2015.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
Inception Architecture for Computer Vision. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[48] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5MB model size, 2016. arXiv:1602.07360.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, page 1097âĂŞ1105, 2012.

[50] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated Residual Transformations for Deep Neural Networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5987–
5995, 2017.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2018.
arXiv:1801.04381.

[52] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2815–2823, 2019.

[53] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasude-
van, Quoc V. Le, and Hartwig Adam. Searching for MobileNetV3, 2019.
arXiv:1905.02244.

[54] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2,
pages 598–605. Morgan-Kaufmann, 1990.

[55] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning Both Weights
and Connections for Efficient Neural Networks. In Proceedings of the 28th In-
ternational Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, pages 1135–1143, 2015.

176

[56] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.
Pruning Convolutional Neural Networks for Resource Efficient Inference, 2016.
arXiv:1611.06440.

[57] Suraj Srinivas and R. Venkatesh Babu. Data-free Parameter Pruning for Deep
Neural Networks. In BMVC, 2015.

[58] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network Trim-
ming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Archi-
tectures, 2016. arXiv:1607.03250.

[59] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang,
and Edward Choi. MorphNet: Fast & Simple Resource-Constrained Structure
Learning of Deep Networks, 2018. arXiv:1711.06798.

[60] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing Energy-Efficient
Convolutional Neural Networks Using Energy-Aware Pruning. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 6071–
6079, 2017.

[61] Sara Elkerdawy, Hong Zhang, and Nilanjan Ray. Lightweight Monocular Depth
Estimation Model by Joint End-to-End Filter pruning, 2019. arXiv:1905.05212.

[62] William Dally. High-Performance Hardware for Machine Learning.
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-
Tutorial-2015.pdf, Dec 2015.

[63] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quan-
tized Convolutional Neural Networks for Mobile Devices. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2016.

[64] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[65] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed Point
Quantization of Deep Convolutional Networks. In Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning - Vol-
ume 48, ICML’16, pages 2849–2858. JMLR.org, 2016.

[66] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained Ternary
Quantization. In 5th International Conference on Learning Representations
ICLR, 2017.

[67] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients, 2016. arXiv:1606.06160.

177

https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf

[68] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Net-
works. In ECCV, 2016.

[69] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Quantized neural networks: Training neural networks with low pre-
cision weights and activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[70] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Prop-
agating Gradients Through Stochastic Neurons for Conditional Computation,
2013. arXiv:1308.3432.

[71] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and
Jack Xin. Understanding Straight-Through Estimator in Training Activation
Quantized Neural Nets, 2019. arXiv:1903.05662.

[72] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo. UNPU: An Energy-
Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit
Precision. IEEE Journal of Solid-State Circuits, 54(1):173–185, 2019.

[73] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Cod-
ing. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference
on Learning Representations ICLR, 2016.

[74] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast Training of Convolu-
tional Networks through FFTs, 2013. arXiv:1312.5851.

[75] Jason Cong and Bingjun Xiao. Minimizing computation in convolutional neural
networks. In International Conference on Artificial Neural Networks, pages
281–290. Springer, 2014.

[76] S. Winograd. Fast Algorithms for Convolutional Neural Networks, 1980.

[77] Andrew Lavin and Scott Gray. Fast Algorithms for Convolutional Neural Net-
works. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[78] OpenBLAS: An optimized BLAS library. http://www.openblas.net/.

[79] cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html.

[80] NVIDIA cuDNN. https://developer.nvidia.com/cudnn.

[81] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang,
Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. The Deep Learning
Compiler: A Comprehensive Survey, 2020. arXiv:2002.03794.

178

http://www.openblas.net/
https://docs.nvidia.com/cuda/cublas/index.html
https://developer.nvidia.com/cudnn

[82] NVIDIA DGX-1. https://www.nvidia.com/en-us/data-center/dgx-1/.

[83] Jetson TX1 Module. https://developer.nvidia.com/embedded/jetson-tx1.

[84] Jetson TX2 Module. https://developer.nvidia.com/embedded/jetson-tx2.

[85] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh K. Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel
Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-Datacenter Performance Analysis of a Tensor
Processing Unit. 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pages 1–12, 2017.

[86] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Mahdi Ghandi, Daniel Lo, Steve Rein-
hardt, Shlomi Alkalay, Hari Angepat, Derek Chiou, Alessandro Forin, Doug
Burger, Lisa Woods, Gabriel Weisz, Michael Haselman, and Dan Zhang. Serv-
ing DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE
Micro, 38:8–20, March 2018.

[87] Apple’s Neural Engine Infuses the iPhone With AI Smarts. https:
//www.wired.com/story/apples-neural-engine-infuses-the-iphone-
with-ai-smarts/.

[88] Accelerate Your On-device AI with the Qualcomm Artificial Intelligence
(AI) Engine on Snapdragon. https://developer.qualcomm.com/blog/
accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-
engine-snapdragon.

[89] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. DianNao: A Small-Footprint High-Throughput Accelera-
tor for Ubiquitous Machine-Learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’14, pages 269–284. Association for Computing Machinery,
2014.

179

https://www.nvidia.com/en-us/data-center/dgx-1/
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx2
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon

[90] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In
2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 609–622, 2014.

[91] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. ShiDianNao: Shifting Vision
Processing Closer to the Sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA’15, pages 92–104. Association for
Computing Machinery, 2015.

[92] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G. Wei, and D. Brooks. Minerva: Enabling Low-Power,
Highly-Accurate Deep Neural Network Accelerators. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 267–
278, 2016.

[93] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. EIE: Efficient Inference Engine on Compressed
Deep Neural Network. In Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA’16, pages 243–254. IEEE Press, 2016.

[94] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. In IEEE International Solid-State Circuits Conference, ISSCC 2016,
Digest of Technical Papers, pages 262–263, 2016.

[95] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos.
Stripes: Bit-serial deep neural network computing. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–12, 2016.

[96] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. SCNN: An Accelerator for Compressed-Sparse Convolutional
Neural Networks. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA’17, page 2740. Association for Computing Ma-
chinery, 2017.

[97] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh. Bit Fusion: Bit-Level Dynamically Composable Architecture for
Accelerating Deep Neural Network. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 764–775, 2018.

[98] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al.
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In

180

13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 578–594, 2018.

[99] Ziheng Jiang, Tianqi Chen, and Mu Li. Efficient deep learning inference on
edge devices. In SysML’18, 2018.

[100] XLA: Optimizing Compiler for Machine Learning | TensorFlow.
https://www.tensorflow.org/xla.

[101] NVIDIA TensorRT. https://developer.nvidia.com/tensorrt.

[102] Xilinx Vitis AI: Adaptable and Real-Time AI Inference Acceleration.
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.

[103] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Al-
bert Cohen. Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions, 2018. arXiv:1802.04730.

[104] Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba,
Matthew Brookhart, Avijit Chakraborty, Will Constable, Christian Convey,
Leona Cook, Omar Kanawi, Robert Kimball, Jason Knight, Nikolay Korovaiko,
Varun Kumar, Yixing Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer
Myers, Sandeep Aswath Narayana, Adam Procter, and Tristan J. Webb. Intel
nGraph: An Intermediate Representation, Compiler, and Executor for Deep
Learning, 2018. arXiv:1801.08058.

[105] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo
Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang. Glow: Graph Low-
ering Compiler Techniques for Neural Networks, 2018. arXiv:1805.00907.

[106] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks. In Proceedings of
the 43rd International Symposium on Computer Architecture, ISCA’16, pages
367–379. IEEE Press, 2016.

[107] NVIDIA Deep Learning Accelerator. http://nvdla.org/.

[108] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li.
Flexflow: A flexible dataflow accelerator architecture for convolutional neural
networks. In 2017 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 553–564. IEEE, 2017.

[109] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei. Deep Convolutional Neu-
ral Network Architecture With Reconfigurable Computation Patterns. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 25(8):2220–2233,
2017.

181

https://www.tensorflow.org/xla
https://developer.nvidia.com/tensorrt
https://www.xilinx.com/products/design-tools/vitis/vitis-ai
http://nvdla.org/

[110] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS’18,
pages 461–475. Association for Computing Machinery, 2018.

[111] Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac
and Sze, Vivienne. FastDepth: Fast Monocular Depth Estimation on Embed-
ded Systems. In IEEE International Conference on Robotics and Automation
(ICRA), 2019.

[112] Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, Yang Xiao, Ruibo Li, and Zhenbo
Luo. Monocular Relative Depth Perception With Web Stereo Data Supervision.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages
311–320, 2018.

[113] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(12):2481–2495,
2017.

[114] Tien-Ju Yang, Maxwell D. Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao
Zhang, Vivienne Sze, George Papandreou, and Liang-Chieh Chen. DeeperLab:
Single-Shot Image Parser. arXiv preprint arXiv:1902.05093, 2019.

[115] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition (CVPR), pages 248–255, 2009.

[116] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and
Checkerboard Artifacts. Distill, 2016.

[117] UltraScale Memory Resources. https://www.xilinx.com/support/
documentation/user_guides/ug573-ultrascale-memory-resources.pdf.

[118] Ultra96 Hardware User Guide. http://zedboard.org/sites/default/files/
documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.pdf.

[119] AXI DMA v7.1 LogiCORE IP. https://www.xilinx.com/support/
documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf.

[120] PYNQ: Python productivity for Zynq. http://www.pynq.io/.

[121] Zynq UltraScale+ Technical Reference Manual. https://www.xilinx.com/
support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf.

[122] A. Yazdanbakhsh, M. Brzozowski, B. Khaleghi, S. Ghodrati, K. Samadi, N. S.
Kim, and H. Esmaeilzadeh. FlexiGAN: An End-to-End Solution for FPGA
Acceleration of Generative Adversarial Networks. In 2018 IEEE 26th Annual

182

https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.pdf
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://www.pynq.io/
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 65–72, 2018.

[123] L. Du, Y. Du, Y. Li, J. Su, Y. Kuan, C. Liu, and M. F. Chang. A Recon-
figurable Streaming Deep Convolutional Neural Network Accelerator for Inter-
net of Things. IEEE Transactions on Circuits and Systems I: Regular Papers,
65(1):198–208, 2018.

[124] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for effi-
cient inference: A whitepaper, 2018. arXiv:1806.08342.

[125] Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik. Neural
Network Distiller: A Python Package For DNN Compression Research, October
2019. arXiv:1910.12232.

[126] Travis Oliphant. A guide to NumPy. Trelgol Publishing USA, 2006.

[127] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch. Real-time stereo vi-
sion system using semi-global matching disparity estimation: Architecture and
FPGA-implementation. In 2010 International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation, pages 93–101, 2010.

[128] D. Honegger, H. Oleynikova, and M. Pollefeys. Real-time and low latency
embedded computer vision hardware based on a combination of FPGA and
mobile CPU. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4930–4935, 2014.

[129] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gam-
bardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, and
et al. Synetgy. Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Feb 2019.

[130] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella,
Kenneth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. FINN-R:
An End-to-End Deep-Learning Framework for Fast Exploration of Quantized
Neural Networks. ACM Trans. Reconfigurable Technol. Syst., 11(3), December
2018.

[131] Fanrong Li, Yang Zhang, Jian Cheng, Zitao Mo, Peisong Wang, Zejian Liu,
Jiayun Zhang, Gang Li, Qinghao Hu, Xiangyu He, and Cong Leng. A System-
Level Solution for Low-Power Object Detection. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision Workshops, ICCV Workshops, pages
2461–2468. IEEE, 2019.

[132] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong
Li, Kyle Rupnow, Jinjun Xiong, Thomas Huang, Honghui Shi, Wen-Mei Hwu,
and Deming Chen. SkyNet: a Hardware-Efficient Method for Object Detection
and Tracking on Embedded Systems. In Proceedings of Machine Learning and
Systems 2020, pages 216–229, 2020.

183

	Introduction
	Monocular Depth Estimation
	Problem Definition
	Literature Review

	Efficient Neural Network Design
	Overview of Deep Neural Networks
	Compact Network Architecture Design
	Network Pruning
	Network Quantization

	Accelerators for Deep Neural Networks
	CPU and GPU Acceleration
	FPGA and ASIC Acceleration
	Neural Network Compilers
	Dataflow-Based Accelerator Design

	Thesis Contributions

	FastDepth, a Compact DNN for Monocular Depth Estimation
	Related Work
	FastDepth DNN Architecture
	Encoder Network
	Decoder Network
	Skip Connections
	Layer Types Used

	Training Environment
	Post-Training Evaluation and Analysis
	Ablation Studies
	Encoder Design Space
	Decoder Design Space
	Skip Connections

	Summary

	Real-Time Depth Inference on an Embedded CPU/GPU
	Hardware-Specific DNN Compilation
	DNN Simplification through Pruning
	Post-Compilation Evaluation on the Jetson TX2
	TX2 Power Consumption Modes

	Live Depth Inference on an Apple iPhone
	Summary

	Energy-Efficient Acceleration on an Embedded FPGA
	Algorithm-Hardware Co-Design Strategy
	Design Considerations

	Dataflow Design
	Heterogeneous Dataflow for Depthwise Separable Layers
	On Serializing vs. Pipelining the Dataflow Design

	Accelerator Design
	Compute Core
	Network-on-Chip (NoC)
	On-chip Memory Hierarchy
	Off-chip Memory Interface

	Accelerator-Friendly FastDepth DNN
	Network Modifications
	Integer Quantization

	Mapping FastDepth onto the Accelerator
	Tiling Feature Maps
	Mapping FastDepth Layers
	Utilization of the PE Array

	Implementation Results
	System Overview
	Logic Performance Analysis
	System Performance Analysis
	External Memory Accesses
	Challenges

	Evaluation of FastDepth on the Ultra96 SoC
	Against FastDepth on the Jetson TX2
	Against Other Workloads on the Ultra96

	Summary

	Conclusion
	Key Takeaways
	Future Work

